Skip to content

Single-cell analysis with non-negative matrix factorization

Notifications You must be signed in to change notification settings

skyler-ruiter/singlet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

singlet v.0.0.99

See the pkgdown website!

Singlet is in active development right now. Do not expect stable functionality yet. Coming soon!

Singlet brings fast Non-negative Matrix Factorization (NMF) with automatic rank determination to the Seurat package for single-cell analysis.

Install

First install the development version of RcppML, note that the CRAN RcppML version will not work:

devtools::install_github("zdebruine/RcppML")

Then install required dependencies, including limma and fgsea:

BiocManager::install("fgsea")
BiocManager::install("limma")

Now install singlet:

devtools::install_github("zdebruine/singlet")

Introductory Vignette

Guided clustering tutorial

Dimension Reduction with NMF

Analyze your single-cell assay with NMF:

library(singlet)
library(Seurat)
library(dplyr)
library(cowplot)
set.seed(123) # for reproducible NMF models
get_pbmc3k_data() %>% NormalizeData %>% RunNMF -> pbmc3k
pbmc3k <- RunUMAP(pbmc3k, reduction = "nmf", dims = 1:ncol(pbmc3k@reductions$nmf))

plot_grid(
     RankPlot(pbmc3k) + NoLegend(), 
     DimPlot(pbmc3k) + NoLegend(), 
     ncol = 2)

NMF can do almost anything that PCA can do, but also imputes missing signal, always has an optimal rank (for variance-stabilized data), uses all the information in your assay (incl. "non-variable" genes), is robust across experiments, learns signatures of transcriptional activity, and is colinear and non-negative (interpretable) rather than orthogonal and signed (not interpretable)

Singlet internally provides the fastest implementation of NMF. Cross-validation can take a few minutes for datasets with a few ten thousand cells, but is extremely scalable and runs excellently on HPC nodes and average laptops alike.

About

Single-cell analysis with non-negative matrix factorization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 79.1%
  • R 20.9%