-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add latex math exercise equation numbering subexercise
- Loading branch information
Showing
4 changed files
with
187 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,155 @@ | ||
\documentclass{scrartcl} | ||
|
||
\usepackage[aux]{rerunfilecheck} | ||
|
||
\usepackage{fontspec} | ||
|
||
\usepackage[ngerman]{babel} | ||
|
||
\usepackage{amsmath} | ||
\usepackage{amssymb} | ||
\usepackage{mathtools} | ||
|
||
\usepackage[ | ||
math-style=ISO, | ||
bold-style=ISO, | ||
sans-style=italic, | ||
nabla=upright, | ||
partial=upright, | ||
mathrm=sym, | ||
]{unicode-math} | ||
|
||
\usepackage[unicode]{hyperref} | ||
\usepackage{bookmark} | ||
|
||
\begin{document} | ||
|
||
\section{Biot--Savart} | ||
|
||
Das Magnetfeld $\symbf{B}$ am Ort $\symbf{r}$ eines stromdurchflossenen Leiters | ||
ergibt sich zu | ||
\begin{equation*} | ||
\symbf{B}(\symbf{r}) = \frac{\mu_0}{4 \symup{\pi}} | ||
\int_V \symbf{j}(\symbf{r}') \times | ||
\frac{\symbf{r} - \symbf{r}'}{\lvert \symbf{r} - \symbf{r}' \rvert^3} | ||
\, \symup{d}V' \, . | ||
\end{equation*} | ||
Hierbei bezeichnet $\symbf{j}$ die Stromdichte am Ort $\symbf{r}'$ und $\mu_0$ | ||
die magnetische Feldkonstante. | ||
|
||
\section{Fehlerfortpflanzung} | ||
|
||
\begin{equation*} | ||
\sigma_f = \sqrt{ | ||
\sum_{i = 1}^N | ||
\left( \frac{\partial f}{\partial x_i} \sigma_i \right)^{\!\! 2} | ||
} | ||
\end{equation*} | ||
|
||
\section{Die vier Maxwellgleichungen} | ||
|
||
\begin{minipage}{.48\textwidth} | ||
\begin{align} | ||
\nabla \cdot \symbf{E} &= \frac{\rho}{\varepsilon_0} \\ | ||
\addtocounter{equation}{+1} | ||
\nabla \times \symbf{E} &= - \partial_t \symbf{B} | ||
\end{align} | ||
\end{minipage} | ||
\hfill | ||
\begin{minipage}{.48\textwidth} | ||
\begin{align} | ||
\addtocounter{equation}{-2} | ||
\nabla \cdot \symbf{B} &= 0 \\ | ||
\addtocounter{equation}{+1} | ||
\nabla \times \symbf{B} &= \mu_0 \symbf{j} + \mu_0 \varepsilon_0 \partial_t \symbf{E} | ||
\end{align} | ||
\end{minipage} | ||
|
||
\section{Wellengleichung} | ||
|
||
Im Vakuum gelten $\rho = 0$ und $\symbf{j} = 0$, womit sich die Maxwellgleichungen zu | ||
\begin{align*} | ||
\nabla \cdot \symbf{E} = 0 \label{eqn:max1} \stepcounter{equation}\tag{\theequation} \\ | ||
\nabla \cdot \symbf{B} &= 0 \\ | ||
\nabla \times \symbf{E} &= - \partial_t \symbf{B} | ||
\label{eqn:max3} \stepcounter{equation}\tag{\theequation} \\ | ||
\nabla \times \symbf{B} &= \mu_0 \varepsilon_0 \partial_t \symbf{E} | ||
\label{eqn:max4} \stepcounter{equation}\tag{\theequation} | ||
\intertext{reduzieren. | ||
Nach erneuter Anwendung der Rotation auf~\eqref{eqn:max3} ergibt sich} | ||
\nabla \times \left( \nabla \times \symbf{E} \right) | ||
&= \nabla \times \left( - \partial_t \symbf{B} \right) \, . | ||
\intertext{Nach dem Satz von Schwarz lassen sich die partiellen Ableitungen vertauschen, | ||
was zu} | ||
\nabla \times \left( \nabla \times \symbf{E} \right) | ||
&= - \partial_t \! \left( \nabla \times \symbf{B} \right) | ||
\intertext{führt. Wir setzen auf der rechten Seite~\eqref{eqn:max4} ein:} | ||
\nabla \times \left( \nabla \times \symbf{E} \right) | ||
&= - \mu_0 \varepsilon_0 \partial_t^2 \symbf{E} \, . | ||
\intertext{Aus der linken Seite wird mit} | ||
\nabla \times \left( \nabla \times \symbf{E} \right) | ||
&= \nabla \cdot \left( \nabla \cdot \symbf{E} \right) - \increment \symbf{E} | ||
\shortintertext{und Ausnutzen von~\eqref{eqn:max1}} | ||
- \increment\symbf{E} &= -\mu_0 \varepsilon_0 \partial_t^2 \symbf{E} . | ||
\intertext{Dies ist die Wellengleichung für das elektrische Feld, | ||
in der sich die Lichtgeschwindigkeit} | ||
\symup{c} &= \frac{1}{\sqrt{\mu_0 \varepsilon_0}} | ||
\intertext{identifizieren lässt. | ||
Damit können wir} | ||
\left(\increment - \frac{1}{\symup{c}^2} \frac{\partial^2}{\partial t^2} \right) | ||
\! \symbf{E} &= 0 | ||
\end{align*} | ||
schreiben. | ||
|
||
\section{Wellengleichung} | ||
|
||
Ebene Welle: | ||
\begin{equation} | ||
\nabla^2 A - \frac{1}{\symup{c}^2} \frac{\partial^2}{\partial t^2} A = 0 | ||
\end{equation} | ||
Eine Lösung: | ||
\begin{equation} | ||
A = A_0 \exp(\mathrm{i} (\symbf{k} \symbf{x} - \omega t)) | ||
\end{equation} | ||
Gruppen- und Phasengeschwindigkeit: | ||
\begin{align} | ||
v_\text{Gr} &= \frac{\partial \omega}{\partial k} & | ||
v_\text{Ph} &= \frac{\omega}{k} | ||
\end{align} | ||
|
||
\section{Multipolentwicklung} | ||
|
||
\begin{align*} | ||
\Phi(\symbf{r}) &= \frac{1}{4 \symup{\pi} \varepsilon_0} \left( | ||
\frac{Q}{r} + \frac{\symbf{r} \cdot \symbf{p}}{r^3} | ||
+ \frac{1}{2} \sum_{k, l} Q_{k l} \frac{r_k r_l}{r^5} + \dotsb | ||
\right) \, , | ||
\shortintertext{wobei} | ||
Q_{k l} &= \sum_{i\,=\,1}^n q_i | ||
\left( 3 r_{i k} r_{i l} - r_i^2 \symup{\delta}_{k l} \right) \, . | ||
\end{align*} | ||
|
||
\section{Jacobi-Matrix} | ||
|
||
\begin{equation} | ||
\symbf{J} = | ||
\begin{pmatrix} | ||
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ | ||
\vdots & \ddots & \vdots \\ | ||
\frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} | ||
\end{pmatrix} | ||
\end{equation} | ||
|
||
\section{Harmonischer Oszillator} | ||
|
||
\begin{equation} | ||
\ddot{x} + 2 \gamma \dot{x} + \omega_0^2 x = 0 | ||
\end{equation} | ||
Reelle Lösung: | ||
\begin{align} | ||
x(t) &= \symup{e}^{-\gamma t} (A \cos(\omega t) + B \sin(\omega t)) \, , | ||
\shortintertext{mit} | ||
\omega &= \sqrt{\omega_0^2 - \gamma^2} \, . | ||
\end{align} | ||
|
||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters