-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
282 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,277 @@ | ||
<p align="center"> | ||
<img alt="Logo" src="https://raw.githubusercontent.com/krichelj/PyDiffGame/master/images/logo.png"/> | ||
</p> | ||
|
||
[![pages-build-deployment](https://github.com/krichelj/PyDiffGame/actions/workflows/pages/pages-build-deployment/badge.svg)](https://github.com/krichelj/PyDiffGame/actions/workflows/pages/pages-build-deployment) | ||
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) | ||
|
||
* [What is this?](#what-is-this) | ||
* [Local Installation](#local-installation) | ||
* [Input Parameters](#input-parameters) | ||
* [Tutorial](#tutorial) | ||
* [Acknowledgments](#acknowledgments) | ||
|
||
# What is this? | ||
|
||
[`PyDiffGame`](https://github.com/krichelj/PyDiffGame) is a Python implementation of a Nash Equilibrium solution to Differential Games, based on a reduction of Game Hamilton-Bellman-Jacobi (GHJB) equations to Game Algebraic and Differential Riccati equations, associated with Multi-Objective Dynamical Control Systems\ | ||
The method relies on the formulation given in: | ||
|
||
- The thesis work "_Differential Games for Compositional Handling of Competing Control Tasks_" | ||
([Research Gate](https://www.researchgate.net/publication/359819808_Differential_Games_for_Compositional_Handling_of_Competing_Control_Tasks)) | ||
|
||
- The conference article "_Composition of Dynamic Control Objectives Based on Differential Games_" | ||
([IEEE](https://ieeexplore.ieee.org/document/9480269) | | ||
[Research Gate](https://www.researchgate.net/publication/353452024_Composition_of_Dynamic_Control_Objectives_Based_on_Differential_Games)) | ||
|
||
If you use this work, please cite our paper: | ||
``` | ||
@conference{med_paper, | ||
author={Kricheli, Joshua Shay and Sadon, Aviran and Arogeti, Shai and Regev, Shimon and Weiss, Gera}, | ||
booktitle={29th Mediterranean Conference on Control and Automation (MED)}, | ||
title={{Composition of Dynamic Control Objectives Based on Differential Games}}, | ||
year={2021}, | ||
pages={298-304}, | ||
doi={10.1109/MED51440.2021.9480269}} | ||
``` | ||
|
||
# Installation | ||
|
||
To install this package run this from the command prompt: | ||
``` | ||
pip install PyDiffGame | ||
``` | ||
|
||
The package was tested for Python >= 3.10, along with the listed packages versions in [`requirments.txt`](https://github.com/krichelj/PyDiffGame/blob/master/requirements.txt) | ||
|
||
# Input Parameters | ||
|
||
The package defines an abstract class [`PyDiffGame.py`](https://github.com/krichelj/PyDiffGame/blob/master/src/PyDiffGame/PyDiffGame.py). An object of this class represents an instance of differential game. | ||
The input parameters to instantiate a `PyDiffGame` object are: | ||
|
||
* `A` : `np.array` of shape $(n,n)$ | ||
>System dynamics matrix | ||
* `B` : `np.array` of shape $(n, m_1 + ... + m_N)$, optional | ||
>Input matrix for all virtual control objectives | ||
* `Bs` : `Sequence` of `np.array` objects of len $(N)$, each array $B_i$ of shape $(n,m_i)$, optional | ||
>Input matrices for each virtual control objective | ||
* `Qs` : `Sequence` of `np.array` objects of len $(N)$, each array $Q_i$ of shape $(n,n)$, optional | ||
>State weight matrices for each virtual control objective | ||
* `Rs` : `Sequence` of `np.array` objects of len $(N)$, each array $R_i$ of shape $(m_i,m_i)$, optional | ||
>Input weight matrices for each virtual control objective | ||
* `Ms` : `Sequence` of `np.array` objects of len $(N)$, each array $M_i$ of shape $(m_i,m)$, optional | ||
>Decomposition matrices for each virtual control objective | ||
* `objectives` : `Sequence` of `Objective` objects of len $(N)$, each $O_i$ specifying $Q_i, R_i$ and $M_i$, optional | ||
>Desired objectives for the game | ||
* `x_0` : `np.array` of len $(n)$, optional | ||
>Initial state vector | ||
* `x_T` : `np.array` of len $(n)$, optional | ||
>Final state vector, in case of signal tracking | ||
* `T_f` : positive `float`, optional | ||
>System dynamics horizon. Should be given in the case of finite horizon | ||
* `P_f` : `list` of `np.array` objects of len $(N)$, each array $P_{f_i}$ of shape $(n,n)$, optional, default = uncoupled solution of `scipy's solve_are` | ||
> | ||
>Final condition for the Riccati equation array. Should be given in the case of finite horizon | ||
* `state_variables_names` : `Sequence` of `str` objects of len $(N)$, optional | ||
>The state variables' names to display when plotting | ||
* `show_legend` : `boolean`, optional | ||
>Indicates whether to display a legend in the plots | ||
* `state_variables_names` : `Sequence` of `str` objects of len $(n)$, optional | ||
>The state variables' names to display | ||
* `epsilon_x` : `float` in the interval $(0,1)$, optional | ||
>Numerical convergence threshold for the state vector of the system | ||
* `epsilon_P` : `float` in the interval $(0,1)$, optional | ||
>Numerical convergence threshold for the matrices P_i | ||
* `L` : positive `int`, optional | ||
>Number of data points | ||
* `eta` : positive `int`, optional | ||
>The number of last matrix norms to consider for convergence | ||
* `debug` : `boolean`, optional | ||
>Indicates whether to display debug information | ||
|
||
# Tutorial | ||
|
||
To demonstrate the use of the package, we provide a few running examples. | ||
Consider the following system of masses and springs: | ||
|
||
|
||
<p align="center"> | ||
<img align=top src="https://raw.githubusercontent.com/krichelj/PyDiffGame/master/src/PyDiffGame/examples/figures/2/two_masses_tikz.png" width="797" height="130"/> | ||
</p> | ||
|
||
The performance of the system under the use of the suggested method is compared with that of a Linear Quadratic Regulator (LQR). For that purpose, class named [`PyDiffGameLQRComparison`](https://github.com/krichelj/PyDiffGame/blob/master/src/PyDiffGame/PyDiffGameLQRComparison.py) is defined. A comparison of a system should subclass this class. | ||
As an example, for the masses and springs system, consider the following instantiation of an [`MassesWithSpringsComparison`](https://github.com/krichelj/PyDiffGame/blob/master/src/PyDiffGame/examples/MassesWithSpringsComparison.py) object: | ||
|
||
```python | ||
import numpy as np | ||
from PyDiffGame.examples.MassesWithSpringsComparison import MassesWithSpringsComparison | ||
|
||
N = 2 | ||
k = 10 | ||
m = 50 | ||
r = 1 | ||
epsilon_x = 10e-8 | ||
epsilon_P = 10e-8 | ||
q = [[500, 2000], [500, 250]] | ||
|
||
x_0 = np.array([10 * i for i in range(1, N + 1)] + [0] * N) | ||
x_T = x_0 * 10 if N == 2 else np.array([(10 * i) ** 3 for i in range(1, N + 1)] + [0] * N) | ||
T_f = 25 | ||
|
||
masses_with_springs = MassesWithSpringsComparison(N=N, | ||
m=m, | ||
k=k, | ||
q=q, | ||
r=r, | ||
x_0=x_0, | ||
x_T=x_T, | ||
T_f=T_f, | ||
epsilon_x=epsilon_x, | ||
epsilon_P=epsilon_P) | ||
``` | ||
|
||
Consider the constructor of the class `MassesWithSpringsComparison`: | ||
|
||
```python | ||
import numpy as np | ||
from typing import Sequence, Optional | ||
|
||
from PyDiffGame.PyDiffGame import PyDiffGame | ||
from PyDiffGame.PyDiffGameLQRComparison import PyDiffGameLQRComparison | ||
from PyDiffGame.Objective import GameObjective, LQRObjective | ||
|
||
|
||
class MassesWithSpringsComparison(PyDiffGameLQRComparison): | ||
def __init__(self, | ||
N: int, | ||
m: float, | ||
k: float, | ||
q: float | Sequence[float] | Sequence[Sequence[float]], | ||
r: float, | ||
Ms: Optional[Sequence[np.array]] = None, | ||
x_0: Optional[np.array] = None, | ||
x_T: Optional[np.array] = None, | ||
T_f: Optional[float] = None, | ||
epsilon_x: Optional[float] = PyDiffGame.epsilon_x_default, | ||
epsilon_P: Optional[float] = PyDiffGame.epsilon_P_default, | ||
L: Optional[int] = PyDiffGame.L_default, | ||
eta: Optional[int] = PyDiffGame.eta_default): | ||
I_N = np.eye(N) | ||
Z_N = np.zeros((N, N)) | ||
|
||
M_masses = m * I_N | ||
K = k * (2 * I_N - np.array([[int(abs(i - j) == 1) for j in range(N)] for i in range(N)])) | ||
M_masses_inv = np.linalg.inv(M_masses) | ||
|
||
M_inv_K = M_masses_inv @ K | ||
|
||
if Ms is None: | ||
eigenvectors = np.linalg.eig(M_inv_K)[1] | ||
Ms = [eigenvector.reshape(1, N) for eigenvector in eigenvectors] | ||
|
||
A = np.block([[Z_N, I_N], | ||
[-M_inv_K, Z_N]]) | ||
B = np.block([[Z_N], | ||
[M_masses_inv]]) | ||
|
||
Qs = [np.diag([0.0] * i + [q] + [0.0] * (N - 1) + [q] + [0.0] * (N - i - 1)) | ||
if isinstance(q, (int, float)) else | ||
np.diag([0.0] * i + [q[i]] + [0.0] * (N - 1) + [q[i]] + [0.0] * (N - i - 1)) for i in range(N)] | ||
|
||
M = np.concatenate(Ms, | ||
axis=0) | ||
|
||
assert np.all(np.abs(np.linalg.inv(M) - M.T) < 10e-12) | ||
|
||
Q_mat = np.kron(a=np.eye(2), | ||
b=M) | ||
|
||
Qs = [Q_mat.T @ Q @ Q_mat for Q in Qs] | ||
|
||
Rs = [np.array([r])] * N | ||
R_lqr = 1 / 4 * r * I_N | ||
Q_lqr = q * np.eye(2 * N) if isinstance(q, (int, float)) else np.diag(2 * q) | ||
|
||
state_variables_names = ['x_{' + str(i) + '}' for i in range(1, N + 1)] + \ | ||
['\\dot{x}_{' + str(i) + '}' for i in range(1, N + 1)] | ||
args = {'A': A, | ||
'B': B, | ||
'x_0': x_0, | ||
'x_T': x_T, | ||
'T_f': T_f, | ||
'state_variables_names': state_variables_names, | ||
'epsilon_x': epsilon_x, | ||
'epsilon_P': epsilon_P, | ||
'L': L, | ||
'eta': eta} | ||
|
||
lqr_objective = [LQRObjective(Q=Q_lqr, | ||
R_ii=R_lqr)] | ||
game_objectives = [GameObjective(Q=Q, | ||
R_ii=R, | ||
M_i=M_i) for Q, R, M_i in zip(Qs, Rs, Ms)] | ||
games_objectives = [lqr_objective, | ||
game_objectives] | ||
|
||
super().__init__(args=args, | ||
M=M, | ||
games_objectives=games_objectives, | ||
continuous=True) | ||
``` | ||
|
||
Finally, consider calling the `masses_with_springs` object as follows: | ||
|
||
```python | ||
output_variables_names = ['$\\frac{x_1 + x_2}{\\sqrt{2}}$', | ||
'$\\frac{x_2 - x_1}{\\sqrt{2}}$', | ||
'$\\frac{\\dot{x}_1 + \\dot{x}_2}{\\sqrt{2}}$', | ||
'$\\frac{\\dot{x}_2 - \\dot{x}_1}{\\sqrt{2}}$'] | ||
|
||
masses_with_springs(plot_state_spaces=True, | ||
plot_Mx=True, | ||
output_variables_names=output_variables_names, | ||
save_figure=True) | ||
``` | ||
|
||
Refer | ||
This will result in the following plot that compares the two systems performance for a differential game vs an LQR: | ||
|
||
<p align="center"> | ||
<img align=top src="https://raw.githubusercontent.com/krichelj/PyDiffGame/master/src/PyDiffGame/examples/figures/2/2-players_large_1.png" width="400" height="300"/> | ||
<img align=top src="https://raw.githubusercontent.com/krichelj/PyDiffGame/master/src/PyDiffGame/examples/figures/2/LQR_large_1.png" width="400" height="300"/> | ||
</p> | ||
|
||
|
||
And when tweaking the weights by setting | ||
|
||
```python | ||
qs = [[500, 5000]] | ||
``` | ||
|
||
we have: | ||
|
||
<p align="center"> | ||
<img align=top src="https://raw.githubusercontent.com/krichelj/PyDiffGame/master/src/PyDiffGame/examples/figures/2/2-players_large_2.png" width="400" height="300"/> | ||
<img align=top src="https://raw.githubusercontent.com/krichelj/PyDiffGame/master/src/PyDiffGame/examples/figures/2/LQR_large_2.png" width="400" height="300"/> | ||
</p> | ||
|
||
|
||
# Acknowledgments | ||
|
||
This research was supported in part by the Leona M. and Harry B. Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics Initiative and by the Marcus Endowment Fund both at Ben-Gurion University of the Negev, Israel. | ||
This research was also supported by The Israeli Smart Transportation Research Center (ISTRC) by The Technion and Bar-Ilan Universities, Israel. | ||
|
||
<p align="center"> | ||
<a href="https://istrc.net.technion.ac.il/"> | ||
<img src="https://github.com/krichelj/PyDiffGame/blob/master/images/Logo_ISTRC_Green_English.png?raw=true" width="233" alt=""/> | ||
</a> | ||
  | ||
<a href="https://in.bgu.ac.il/en/Pages/default.aspx"> | ||
<img src="https://www.bgu.ac.il/media/5rgd1k0q/logo.png" width="233" alt=""/> | ||
</a> | ||
  | ||
  | ||
<a href="https://helmsleytrust.org/"> | ||
<img alt="Helmsley Charitable Trust" src="https://helmsleytrust.org/wp-content/themes/helmsley/assets/img/helmsley-charitable-trust-logo-blue.png" width="233"> | ||
</a> | ||
</p> |