Skip to content

LeddarTech 公司通过 Python 库提供了一个应用程序编程接口(API)和一个图形用户界面(GUI)[2],可与毫米波雷达数据集配合使用。该库抽象了同步和数据转换,从而减少了设置和使用这些数据集进行实验所需的时间。

License

Notifications You must be signed in to change notification settings

bluetoothwarrior/pioneer.das.api

 
 

Repository files navigation

pioneer.das.api

pioneer.das.api is a python library that provides an api to read and to transform the raw data of leddartech' datasets.

Pixset Dataset

Pixset is the first dataset using the leddartech Pixell sensor. A solid state flash LiDAR that can provide full wave-form data. All the annotated frames of the dataset have been recorded in Montreal and Quebec city under various environmental conditions.

A full description of the Pixset dataset can be found here:

We've also published a set of tools to help users in manipulating the dataset data. The das.api can be used to process data of one or many parts of the dataset with the help of a convenient and user-friendly python api.

The full documentation for the das.api can be found here: https://leddartech.github.io/pioneer.das.api/

Installation

You can install the pioneer.das.api with the package manager pip.

pip install pioneer-das-api

When developing, you can link the repository to your python site-packages and enable hot-reloading of the package.

python3 setup.py develop --user

If you don't want to install all the dependencies on your computer, you can run it in a virtual environment

pipenv install --skip-lock

pipenv shell

Usage

from pioneer.das.api.platform import Platform

pf = Platform('path/to/dataset')

pixell = pf.sensors['pixell_bfc']

echoes = pixell['ech']

You can find more in-depth examples of different use of cases for the pioneer.das.api here: https://github.com/leddartech/pioneer.das.api/tree/master/docs/jupyterNotebooks

About

LeddarTech 公司通过 Python 库提供了一个应用程序编程接口(API)和一个图形用户界面(GUI)[2],可与毫米波雷达数据集配合使用。该库抽象了同步和数据转换,从而减少了设置和使用这些数据集进行实验所需的时间。

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%