π Homepage | π arXiv | π€ HuggingFace Dataset
This repo contains the codebase for our paper TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding
TheoremExplainAgent is an AI system that generates long-form Manim videos to visually explain theorems, proving its deep understanding while uncovering reasoning flaws that text alone often hides.
trailer_caption.mp4
- 2025 Mar 3: Generation code and Evaluation code released. Thanks for the wait!
- Setting up conda environment
conda create --name tea python=3.12.8
conda activate tea
pip install -r requirements.txt
-
You may also need to install latex and other dependencies for Manim Community. Look at Manim Installation Docs for more details.
-
Then Download the Kokoro model and voices using the commands to enable TTS service.
mkdir -p models && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/kokoro-v0_19.onnx && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/voices.bin
- Create
.env
based on.env.template
, filling in the environmental variables according to the models you choose to use. See LiteLLM for reference.
Your .env
file should look like the following:
# OpenAI
OPENAI_API_KEY=""
# Azure OpenAI
AZURE_API_KEY=""
AZURE_API_BASE=""
AZURE_API_VERSION=""
# Google Vertex AI
VERTEXAI_PROJECT=""
VERTEXAI_LOCATION=""
GOOGLE_APPLICATION_CREDENTIALS=""
# Google Gemini
GEMINI_API_KEY=""
...
# Kokoro TTS Settings
KOKORO_MODEL_PATH="models/kokoro-v0_19.onnx"
KOKORO_VOICES_PATH="models/voices.bin"
KOKORO_DEFAULT_VOICE="af"
KOKORO_DEFAULT_SPEED="1.0"
KOKORO_DEFAULT_LANG="en-us"
Fill in the API keys according to the model you wanted to use.
- Configure Python path. Note that you need to do
export PYTHONPATH=$(pwd):$PYTHONPATH
To make it work. Otherwise you may encounter import issues.
The model naming follows the LiteLLM convention. For details on how models should be named, please refer to the LiteLLM documentation.
python generate_video.py \
--model "openai/o3-mini" \
--helper_model "openai/o3-mini" \
--output_dir "output/your_exp_name" \
--topic "your_topic" \
--context "description of your topic, e.g. 'This is a topic about the properties of a triangle'" \
Example:
python generate_video.py \
--model "openai/o3-mini" \
--helper_model "openai/o3-mini" \
--output_dir "output/my_exp_name" \
--topic "Big O notation" \
--context "most common type of asymptotic notation in computer science used to measure worst case complexity" \
python generate_video.py \
--model "openai/o3-mini" \
--helper_model "openai/o3-mini" \
--output_dir "output/my_exp_name" \
--theorems_path data/thb_easy/math.json \
--max_scene_concurrency 7 \
--max_topic_concurrency 20 \
Before using RAG, download the RAG documentation from this Google Drive link. After downloading, unzip the file. For example, if you unzip it to data/rag/manim_docs
, then you should set --manim_docs_path
to data/rag/manim_docs
. The vector database will be created the first time you run with RAG.
python generate_video.py \
--model "openai/o3-mini" \
--helper_model "openai/o3-mini" \
--output_dir "output/with_rag/o3-mini/vtutorbench_easy/math" \
--topic "Big O notation" \
--context "most common type of asymptotic notation in computer science used to measure worst case complexity" \
--use_rag \
--chroma_db_path "data/rag/chroma_db" \
--manim_docs_path "data/rag/manim_docs" \
--embedding_model "vertex_ai/text-embedding-005"
We support more options for generation, see below for more details:
usage: generate_video.py [-h]
[--model]
[--topic TOPIC] [--context CONTEXT]
[--helper_model]
[--only_gen_vid] [--only_combine] [--peek_existing_videos] [--output_dir OUTPUT_DIR] [--theorems_path THEOREMS_PATH]
[--sample_size SAMPLE_SIZE] [--verbose] [--max_retries MAX_RETRIES] [--use_rag] [--use_visual_fix_code]
[--chroma_db_path CHROMA_DB_PATH] [--manim_docs_path MANIM_DOCS_PATH]
[--embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}] [--use_context_learning]
[--context_learning_path CONTEXT_LEARNING_PATH] [--use_langfuse] [--max_scene_concurrency MAX_SCENE_CONCURRENCY]
[--max_topic_concurrency MAX_TOPIC_CONCURRENCY] [--debug_combine_topic DEBUG_COMBINE_TOPIC] [--only_plan] [--check_status]
[--only_render] [--scenes SCENES [SCENES ...]]
Generate Manim videos using AI
options:
-h, --help show this help message and exit
--model Select the AI model to use
--topic TOPIC Topic to generate videos for
--context CONTEXT Context of the topic
--helper_model Select the helper model to use
--only_gen_vid Only generate videos to existing plans
--only_combine Only combine videos
--peek_existing_videos, --peek
Peek at existing videos
--output_dir OUTPUT_DIR
Output directory
--theorems_path THEOREMS_PATH
Path to theorems json file
--sample_size SAMPLE_SIZE, --sample SAMPLE_SIZE
Number of theorems to sample
--verbose Print verbose output
--max_retries MAX_RETRIES
Maximum number of retries for code generation
--use_rag, --rag Use Retrieval Augmented Generation
--use_visual_fix_code, --visual_fix_code
Use VLM to fix code with rendered visuals
--chroma_db_path CHROMA_DB_PATH
Path to Chroma DB
--manim_docs_path MANIM_DOCS_PATH
Path to manim docs
--embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}
Select the embedding model to use
--use_context_learning
Use context learning with example Manim code
--context_learning_path CONTEXT_LEARNING_PATH
Path to context learning examples
--use_langfuse Enable Langfuse logging
--max_scene_concurrency MAX_SCENE_CONCURRENCY
Maximum number of scenes to process concurrently
--max_topic_concurrency MAX_TOPIC_CONCURRENCY
Maximum number of topics to process concurrently
--debug_combine_topic DEBUG_COMBINE_TOPIC
Debug combine videos
--only_plan Only generate scene outline and implementation plans
--check_status Check planning and code status for all theorems
--only_render Only render scenes without combining videos
--scenes SCENES [SCENES ...]
Specific scenes to process (if theorems_path is provided)
Note that Gemini and GPT4o is required for evaluation.
Currently, evaluation requires a video file and a subtitle file (SRT format).
Video evaluation:
usage: evaluate.py [-h]
[--model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
[--model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}]
[--model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
[--eval_type {text,video,image,all}] --file_path FILE_PATH --output_folder OUTPUT_FOLDER [--retry_limit RETRY_LIMIT] [--combine] [--bulk_evaluate] [--target_fps TARGET_FPS]
[--use_parent_folder_as_topic] [--max_workers MAX_WORKERS]
Automatic evaluation of theorem explanation videos with LLMs
options:
-h, --help show this help message and exit
--model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
Select the AI model to use for text evaluation
--model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}
Select the AI model to use for video evaluation
--model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
Select the AI model to use for image evaluation
--eval_type {text,video,image,all}
Type of evaluation to perform
--file_path FILE_PATH
Path to a file or a theorem folder
--output_folder OUTPUT_FOLDER
Directory to store the evaluation files
--retry_limit RETRY_LIMIT
Number of retry attempts for each inference
--combine Combine all results into a single JSON file
--bulk_evaluate Evaluate a folder of theorems together
--target_fps TARGET_FPS
Target FPS for video processing. If not set, original video FPS will be used
--use_parent_folder_as_topic
Use parent folder name as topic name for single file evaluation
--max_workers MAX_WORKERS
Maximum number of concurrent workers for parallel processing
- For
file_path
, it is recommended to pass a folder containing both an MP4 file and an SRT file.
Q: Error src.utils.kokoro_voiceover import KokoroService # You MUST import like this as this is our custom voiceover service. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: No module named 'src'
.
A: Please run export PYTHONPATH=$(pwd):$PYTHONPATH
when you start a new terminal.
Q: Error Files not found
A: Check your Manim installation.
Please kindly cite our paper if you use our code, data, models or results:
@misc{ku2025theoremexplainagentmultimodalexplanationsllm,
title={TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding},
author={Max Ku and Thomas Chong and Jonathan Leung and Krish Shah and Alvin Yu and Wenhu Chen},
year={2025},
eprint={2502.19400},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2502.19400},
}
This project is released under the the MIT License.
We want to thank Votee AI for sponsoring API keys to access the close-sourced models.
The code is built upon the below repositories, we thank all the contributors for open-sourcing.
- Manim Community
- kokoro-manim-voiceover
- manim-physics
- manim-Chemistry
- ManimML
- manim-dsa
- manim-circuit
This work is intended for research purposes only. The authors do not encourage or endorse the use of this codebase for commercial applications. The code is provided "as is" without any warranties, and users assume all responsibility for its use.
Tested Environment: MacOS, Linux