Skip to content

Official Repo for "TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding"

License

Notifications You must be signed in to change notification settings

TIGER-AI-Lab/TheoremExplainAgent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

21 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

TheoremExplainAgent

arXiv

🌐 Homepage | πŸ“– arXiv | πŸ€— HuggingFace Dataset

contributors license GitHub Hits

This repo contains the codebase for our paper TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding

Introduction

TheoremExplainAgent is an AI system that generates long-form Manim videos to visually explain theorems, proving its deep understanding while uncovering reasoning flaws that text alone often hides.

trailer_caption.mp4

πŸ“° News

  • 2025 Mar 3: Generation code and Evaluation code released. Thanks for the wait!
  • 2025 Feb 27: Paper available on Arxiv. Thanks AK for putting our paper on HF Daily.

Installation

  1. Setting up conda environment
conda create --name tea python=3.12.8
conda activate tea
pip install -r requirements.txt
  1. You may also need to install latex and other dependencies for Manim Community. Look at Manim Installation Docs for more details.

  2. Then Download the Kokoro model and voices using the commands to enable TTS service.

mkdir -p models && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/kokoro-v0_19.onnx && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/voices.bin
  1. Create .env based on .env.template, filling in the environmental variables according to the models you choose to use. See LiteLLM for reference.

Your .env file should look like the following:

# OpenAI
OPENAI_API_KEY=""

# Azure OpenAI
AZURE_API_KEY=""
AZURE_API_BASE=""
AZURE_API_VERSION=""

# Google Vertex AI
VERTEXAI_PROJECT=""
VERTEXAI_LOCATION=""
GOOGLE_APPLICATION_CREDENTIALS=""

# Google Gemini
GEMINI_API_KEY=""

...

# Kokoro TTS Settings
KOKORO_MODEL_PATH="models/kokoro-v0_19.onnx"
KOKORO_VOICES_PATH="models/voices.bin"
KOKORO_DEFAULT_VOICE="af"
KOKORO_DEFAULT_SPEED="1.0"
KOKORO_DEFAULT_LANG="en-us"

Fill in the API keys according to the model you wanted to use.

  1. Configure Python path. Note that you need to do
export PYTHONPATH=$(pwd):$PYTHONPATH

To make it work. Otherwise you may encounter import issues.

Supported Models

The model naming follows the LiteLLM convention. For details on how models should be named, please refer to the LiteLLM documentation.

Generation (Single topic)

python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/your_exp_name" \
      --topic "your_topic" \
      --context "description of your topic, e.g. 'This is a topic about the properties of a triangle'" \

Example:

python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/my_exp_name" \
      --topic "Big O notation" \
      --context "most common type of asymptotic notation in computer science used to measure worst case complexity" \

Generation (in batch)

python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/my_exp_name" \
      --theorems_path data/thb_easy/math.json \
      --max_scene_concurrency 7 \
      --max_topic_concurrency 20 \

Generation with RAG

Before using RAG, download the RAG documentation from this Google Drive link. After downloading, unzip the file. For example, if you unzip it to data/rag/manim_docs, then you should set --manim_docs_path to data/rag/manim_docs. The vector database will be created the first time you run with RAG.

python generate_video.py \
            --model "openai/o3-mini" \
            --helper_model "openai/o3-mini" \
            --output_dir "output/with_rag/o3-mini/vtutorbench_easy/math" \
            --topic "Big O notation" \
            --context "most common type of asymptotic notation in computer science used to measure worst case complexity" \
            --use_rag \
            --chroma_db_path "data/rag/chroma_db" \
            --manim_docs_path "data/rag/manim_docs" \
            --embedding_model "vertex_ai/text-embedding-005"

We support more options for generation, see below for more details:

usage: generate_video.py [-h]
                         [--model]
                         [--topic TOPIC] [--context CONTEXT]
                         [--helper_model]
                         [--only_gen_vid] [--only_combine] [--peek_existing_videos] [--output_dir OUTPUT_DIR] [--theorems_path THEOREMS_PATH]
                         [--sample_size SAMPLE_SIZE] [--verbose] [--max_retries MAX_RETRIES] [--use_rag] [--use_visual_fix_code]
                         [--chroma_db_path CHROMA_DB_PATH] [--manim_docs_path MANIM_DOCS_PATH]
                         [--embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}] [--use_context_learning]
                         [--context_learning_path CONTEXT_LEARNING_PATH] [--use_langfuse] [--max_scene_concurrency MAX_SCENE_CONCURRENCY]
                         [--max_topic_concurrency MAX_TOPIC_CONCURRENCY] [--debug_combine_topic DEBUG_COMBINE_TOPIC] [--only_plan] [--check_status]
                         [--only_render] [--scenes SCENES [SCENES ...]]

Generate Manim videos using AI

options:
  -h, --help            show this help message and exit
  --model               Select the AI model to use
  --topic TOPIC         Topic to generate videos for
  --context CONTEXT     Context of the topic
  --helper_model        Select the helper model to use
  --only_gen_vid        Only generate videos to existing plans
  --only_combine        Only combine videos
  --peek_existing_videos, --peek
                        Peek at existing videos
  --output_dir OUTPUT_DIR
                        Output directory
  --theorems_path THEOREMS_PATH
                        Path to theorems json file
  --sample_size SAMPLE_SIZE, --sample SAMPLE_SIZE
                        Number of theorems to sample
  --verbose             Print verbose output
  --max_retries MAX_RETRIES
                        Maximum number of retries for code generation
  --use_rag, --rag      Use Retrieval Augmented Generation
  --use_visual_fix_code, --visual_fix_code
                        Use VLM to fix code with rendered visuals
  --chroma_db_path CHROMA_DB_PATH
                        Path to Chroma DB
  --manim_docs_path MANIM_DOCS_PATH
                        Path to manim docs
  --embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}
                        Select the embedding model to use
  --use_context_learning
                        Use context learning with example Manim code
  --context_learning_path CONTEXT_LEARNING_PATH
                        Path to context learning examples
  --use_langfuse        Enable Langfuse logging
  --max_scene_concurrency MAX_SCENE_CONCURRENCY
                        Maximum number of scenes to process concurrently
  --max_topic_concurrency MAX_TOPIC_CONCURRENCY
                        Maximum number of topics to process concurrently
  --debug_combine_topic DEBUG_COMBINE_TOPIC
                        Debug combine videos
  --only_plan           Only generate scene outline and implementation plans
  --check_status        Check planning and code status for all theorems
  --only_render         Only render scenes without combining videos
  --scenes SCENES [SCENES ...]
                        Specific scenes to process (if theorems_path is provided)

Evaluation

Note that Gemini and GPT4o is required for evaluation.

Currently, evaluation requires a video file and a subtitle file (SRT format).

Video evaluation:

usage: evaluate.py [-h]
                   [--model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
                   [--model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}]
                   [--model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
                   [--eval_type {text,video,image,all}] --file_path FILE_PATH --output_folder OUTPUT_FOLDER [--retry_limit RETRY_LIMIT] [--combine] [--bulk_evaluate] [--target_fps TARGET_FPS]
                   [--use_parent_folder_as_topic] [--max_workers MAX_WORKERS]

Automatic evaluation of theorem explanation videos with LLMs

options:
  -h, --help            show this help message and exit
  --model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
                        Select the AI model to use for text evaluation
  --model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}
                        Select the AI model to use for video evaluation
  --model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
                        Select the AI model to use for image evaluation
  --eval_type {text,video,image,all}
                        Type of evaluation to perform
  --file_path FILE_PATH
                        Path to a file or a theorem folder
  --output_folder OUTPUT_FOLDER
                        Directory to store the evaluation files
  --retry_limit RETRY_LIMIT
                        Number of retry attempts for each inference
  --combine             Combine all results into a single JSON file
  --bulk_evaluate       Evaluate a folder of theorems together
  --target_fps TARGET_FPS
                        Target FPS for video processing. If not set, original video FPS will be used
  --use_parent_folder_as_topic
                        Use parent folder name as topic name for single file evaluation
  --max_workers MAX_WORKERS
                        Maximum number of concurrent workers for parallel processing
  • For file_path, it is recommended to pass a folder containing both an MP4 file and an SRT file.

❓ FAQ

Q: Error src.utils.kokoro_voiceover import KokoroService # You MUST import like this as this is our custom voiceover service. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: No module named 'src'.
A: Please run export PYTHONPATH=$(pwd):$PYTHONPATH when you start a new terminal.

Q: Error Files not found
A: Check your Manim installation.

πŸ–ŠοΈ Citation

Please kindly cite our paper if you use our code, data, models or results:

@misc{ku2025theoremexplainagentmultimodalexplanationsllm,
      title={TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding}, 
      author={Max Ku and Thomas Chong and Jonathan Leung and Krish Shah and Alvin Yu and Wenhu Chen},
      year={2025},
      eprint={2502.19400},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2502.19400}, 
}

🎫 License

This project is released under the the MIT License.

⭐ Star History

Star History Chart

πŸ’ž Acknowledgements

We want to thank Votee AI for sponsoring API keys to access the close-sourced models.

The code is built upon the below repositories, we thank all the contributors for open-sourcing.

🚨 Disclaimer

This work is intended for research purposes only. The authors do not encourage or endorse the use of this codebase for commercial applications. The code is provided "as is" without any warranties, and users assume all responsibility for its use.

Tested Environment: MacOS, Linux

About

Official Repo for "TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages