-
Notifications
You must be signed in to change notification settings - Fork 98
/
Copy pathevaluate.py
474 lines (394 loc) · 18.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import os
import json
import argparse
import tempfile
from typing import Dict, List, Union
from datetime import datetime
from dotenv import load_dotenv
from moviepy import VideoFileClip
from mllm_tools.litellm import LiteLLMWrapper
from mllm_tools.gemini import GeminiWrapper
from eval_suite.utils import calculate_geometric_mean
from eval_suite.text_utils import parse_srt_to_text, fix_transcript, evaluate_text
from eval_suite.video_utils import evaluate_video_chunk_new
from eval_suite.image_utils import evaluate_sampled_images
load_dotenv()
with open(os.path.join(os.path.dirname(os.path.abspath(__file__)), "src", "utils", "allowed_models.json")) as f:
ALLOWED_MODELS = json.load(f)["allowed_models"]
def combine_results(output_folder: str, combined_file: str, results: Dict[str, Dict]) -> None:
"""
Combine all evaluation results into a single file.
Args:
output_folder (str): Directory to store the combined file.
combined_file (str): Name of the combined file.
results (Dict[str, Dict]): Dictionary of evaluation results with file names as keys.
Returns:
None
"""
combined_path = os.path.join(output_folder, combined_file)
with open(combined_path, 'w') as output_file:
json.dump(results, output_file, indent=4)
def save_individual_result(output_folder: str, file_name: str, result: Dict) -> None:
"""
Save individual evaluation result to a file.
Args:
output_folder (str): Directory to store the evaluation file.
file_name (str): Name of the file.
result (Dict): Evaluation result.
Returns:
None
"""
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
result_file = f"evaluation_{file_name}_{current_time}.json"
os.makedirs(output_folder, exist_ok=True)
result_path = os.path.join(output_folder, result_file)
with open(result_path, 'w') as output_file:
json.dump(result, output_file, indent=4)
def evaluate_text_file(model, transcript_path, retry_limit):
"""
Evaluate a text file using the provided model.
Args:
model: The model to use for evaluation.
transcript_path (str): Path to the transcript file (.srt or .txt).
retry_limit (int): Number of retry attempts for evaluation.
Returns:
Dict or None: Evaluation results if successful, None if file format unsupported.
"""
if not transcript_path.endswith(('.srt', '.txt')):
print(f"Skipping {transcript_path}: Unsupported file format for text evaluation.")
return None
if transcript_path.endswith(".srt"):
transcript = parse_srt_to_text(transcript_path)
elif transcript_path.endswith(".txt"):
with open(transcript_path) as f:
transcript = f.read().strip()
else:
raise ValueError("Unrecognized transcript file format.")
capital_letter_proportion = sum(1 for c in transcript if c.isupper()) / sum(1 for c in transcript if c.isalpha())
if capital_letter_proportion < 0.01:
transcript = fix_transcript(model, transcript)
print(f"Performing text evaluation: {os.path.basename(transcript_path)}")
result = evaluate_text(model, transcript, retry_limit)
return result
def evaluate_video_file(model, video_path, transcript_path, description_path, target_fps=None, output_folder=None):
"""
Evaluate a video file using the provided model.
Args:
model: The model to use for evaluation.
video_path (str): Path to the video file.
transcript_path (str): Path to the transcript file.
description_path (str): Path to the description file.
target_fps (int, optional): Target frames per second for video processing.
output_folder (str, optional): Directory to store output files.
Returns:
Dict or None: Evaluation results if successful, None if file format unsupported.
"""
if not video_path.endswith(('.mp4', '.mkv')):
print(f"Skipping {video_path}: Unsupported file format for video evaluation.")
return None
moviepy_temp_dir = os.path.join(output_folder, "moviepy_temp")
# Chunking
num_chunks = 10
with VideoFileClip(video_path) as clip:
duration = clip.duration
chunk_duration = duration / num_chunks
results = []
# Create a temporary directory in the output_folder
temp_dir_parent = output_folder or os.getcwd()
with tempfile.TemporaryDirectory(dir=temp_dir_parent) as temp_dir:
for i in range(10):
start = i * chunk_duration
end = min(start + chunk_duration, duration)
chunk = clip.subclipped(start, end)
chunk_path = os.path.join(temp_dir, f"chunk_{i+1}.mp4")
# Explicitly set the temp_audiofile path with matching codec
temp_audiofile = os.path.join(moviepy_temp_dir, f"temp_audio_chunk_{i+1}.m4a")
chunk.write_videofile(
chunk_path,
codec="libx264",
audio_codec="aac",
temp_audiofile=temp_audiofile,
audio_bitrate="192k",
preset="ultrafast", # Speed up encoding
logger=None
)
# Create processed videos folder inside output_folder
processed_videos_dir = os.path.join(output_folder, "processed_videos")
save_path = os.path.join(processed_videos_dir, f"processed_chunk_{i+1}.mp4")
result = evaluate_video_chunk_new(
model,
chunk_path,
transcript_path,
description_path,
target_fps=target_fps,
save_processed_video=save_path
)
results.append(result)
score_dict = {}
for key in results[0]["evaluation"].keys():
score_dict[key] = []
for result in results:
score_dict[key].append(result["evaluation"][key]["score"])
evaluation = {}
for key, scores in score_dict.items():
evaluation[key] = {"score": calculate_geometric_mean(scores)}
result_json = {
"evaluation": evaluation,
"video_chunks": results
}
return result_json
def extract_scores(data: Union[Dict, List]) -> List[int]:
"""
Extract all score values from a nested dictionary or list structure.
Args:
data (Union[Dict, List]): The data structure to extract scores from.
Returns:
List[int]: List of extracted score values.
"""
scores = []
if isinstance(data, dict):
for key, value in data.items():
if "chunks" in key:
continue
elif isinstance(value, dict) or isinstance(value, list):
scores.extend(extract_scores(value))
elif key == 'score':
scores.append(value)
elif isinstance(data, list):
for item in data:
scores.extend(extract_scores(item))
return scores
def calculate_overall_score(result: Dict) -> float:
"""
Calculate the overall score from evaluation results.
Args:
result (Dict): Dictionary containing evaluation results.
Returns:
float: The calculated overall score.
"""
scores = extract_scores(result)
overall_score = calculate_geometric_mean(scores)
return overall_score
def process_topic_name(topic_name: str) -> str:
"""
Process a topic name by capitalizing words and handling special characters.
Args:
topic_name (str): The topic name to process.
Returns:
str: The processed topic name.
"""
words = topic_name.replace("_s_", "'s_").split("_")
return " ".join([word.capitalize() for word in words])
def merge_dicts(dict1: dict, dict2: dict) -> dict:
"""
Recursively merge two dictionaries.
Args:
dict1 (dict): First dictionary.
dict2 (dict): Second dictionary.
Returns:
dict: Merged dictionary.
"""
merged = dict1.copy()
for key, value in dict2.items():
if key in merged and isinstance(merged[key], dict) and isinstance(value, dict):
merged[key] = merge_dicts(merged[key], value)
else:
merged[key] = value
return merged
def process_theorem(models, file_path: str, eval_type: str, retry_limit: int,
target_fps: int = None, use_parent_folder_as_topic: bool = False,
output_folder: str = None) -> tuple[str, dict]:
"""
Process a theorem file or directory for evaluation.
Args:
models: Dictionary of models for different evaluation types.
file_path (str): Path to the file or directory to evaluate.
eval_type (str): Type of evaluation to perform.
retry_limit (int): Number of retry attempts.
target_fps (int, optional): Target frames per second for video processing.
use_parent_folder_as_topic (bool, optional): Use parent folder name as topic.
output_folder (str, optional): Directory to store output files.
Returns:
tuple[str, dict]: Tuple of file name and evaluation results.
"""
ext_map = {
'text': ('.txt', '.srt'),
'video': ('.mp4', '.mkv')
}
# Handle single file evaluation
if os.path.isfile(file_path):
file_ext = os.path.splitext(file_path)[1].lower()
file_name = os.path.basename(file_path)
if eval_type == "text" and file_ext in ext_map['text']:
return file_name, evaluate_text_file(models['text'], file_path, retry_limit)
elif eval_type == "video" and file_ext in ext_map['video']:
if use_parent_folder_as_topic:
topic_name = os.path.basename(os.path.dirname(file_path))
else:
topic_name = None
topic_name = process_topic_name(topic_name)
return file_name, evaluate_video_file(models['video'], file_path, None, topic_name, target_fps, output_folder)
elif eval_type == "image" and file_ext in ext_map['video']:
if use_parent_folder_as_topic:
topic_name = os.path.basename(os.path.dirname(file_path))
else:
topic_name = None
topic_name = process_topic_name(topic_name)
return file_name, evaluate_sampled_images(models['image'], file_path, topic_name, num_chunks=10, output_folder=output_folder)
elif eval_type == "all":
raise ValueError("Evaluation type 'all' is not supported for a single file. Try passing a folder with both a video and a subtitle file.")
else:
raise ValueError(f"File type of {file_path} does not match evaluation type {eval_type!r}")
# Handle directory evaluation
theorem_dir = file_path
all_files = os.listdir(theorem_dir)
# Look for transcript files, prioritizing .srt over .txt if both exist
transcript_file_candidates = [f for f in all_files if f.endswith(ext_map['text']) and not f.endswith('_scene_outline.txt')]
srt_files = [f for f in transcript_file_candidates if f.endswith('.srt')]
txt_files = [f for f in transcript_file_candidates if f.endswith('.txt')]
transcript_path = None
if srt_files:
transcript_path = os.path.join(theorem_dir, srt_files[0])
elif txt_files:
transcript_path = os.path.join(theorem_dir, txt_files[0])
video_file_candidates = [f for f in all_files if f.endswith(ext_map['video'])]
video_path = os.path.join(theorem_dir, video_file_candidates[0]) if len(video_file_candidates) == 1 else None
topic_name = os.path.basename(theorem_dir)
topic_name = process_topic_name(topic_name)
if not video_path:
print(f"Skipping {theorem_dir}: No video file found")
return None, None
text_result = video_result = image_result = None
if eval_type == "text" or eval_type == "all":
if transcript_path is None:
print(f"Warning: No suitable transcript file found in {theorem_dir}")
else:
text_result = evaluate_text_file(models['text'], transcript_path, retry_limit)
if eval_type == "video" or eval_type == "all":
assert video_path is not None, f"Expected 1 video file, got {len(video_file_candidates)} for {theorem_dir}"
video_result = evaluate_video_file(models['video'], video_path, transcript_path, topic_name, target_fps, output_folder)
if eval_type == "image" or eval_type == "all":
assert video_path is not None, f"Expected 1 video file, got {len(video_file_candidates)} for {theorem_dir}"
image_result = evaluate_sampled_images(models['image'], video_path, topic_name, num_chunks=10, output_folder=output_folder)
if eval_type == "all":
result = {}
if text_result:
result = merge_dicts(result, text_result)
if video_result:
result = merge_dicts(result, video_result)
if image_result:
result = merge_dicts(result, image_result)
if result:
result["evaluation"]["overall_score"] = calculate_overall_score(result)
else:
result = text_result if eval_type == "text" else video_result if eval_type == "video" else image_result if eval_type == "image" else None
file_name = os.path.basename(theorem_dir)
return file_name, result
def main():
"""
Main function to run the evaluation script.
Parses command line arguments and orchestrates the evaluation process
for text, video, and image content using specified AI models.
"""
parser = argparse.ArgumentParser(description='Automatic evaluation of theorem explanation videos with LLMs')
parser.add_argument('--model_text', type=str,
choices=ALLOWED_MODELS,
default='azure/gpt-4o',
help='Select the AI model to use for text evaluation')
parser.add_argument('--model_video', type=str,
choices=['gemini/gemini-1.5-pro-002',
'gemini/gemini-2.0-flash-exp',
'gemini/gemini-2.0-pro-exp-02-05'],
default='gemini/gemini-1.5-pro-002',
help='Select the AI model to use for video evaluation')
parser.add_argument('--model_image', type=str,
choices=ALLOWED_MODELS,
default='azure/gpt-4o',
help='Select the AI model to use for image evaluation')
parser.add_argument('--eval_type', type=str, choices=['text', 'video', 'image', 'all'], default='all', help='Type of evaluation to perform')
parser.add_argument('--file_path', type=str, help='Path to a file or a theorem folder', required=True)
parser.add_argument('--output_folder', type=str, help='Directory to store the evaluation files', required=True)
parser.add_argument('--retry_limit', type=int, default=3, help='Number of retry attempts for each inference')
parser.add_argument('--combine', action='store_true', help='Combine all results into a single JSON file')
parser.add_argument('--bulk_evaluate', action='store_true', help='Evaluate a folder of theorems together', default=False)
parser.add_argument('--target_fps', type=int, help='Target FPS for video processing. If not set, original video FPS will be used', required=False)
parser.add_argument('--use_parent_folder_as_topic', action='store_true', help='Use parent folder name as topic name for single file evaluation', default=True)
parser.add_argument('--max_workers', type=int, default=4, help='Maximum number of concurrent workers for parallel processing')
args = parser.parse_args()
# Initialize separate models
text_model = LiteLLMWrapper(
model_name=args.model_text,
temperature=0.0,
)
video_model = GeminiWrapper(
model_name=args.model_video,
temperature=0.0,
)
image_model = LiteLLMWrapper(
model_name=args.model_image,
temperature=0.0,
)
models = {
'text': text_model,
'video': video_model,
'image': image_model
}
theorem_dirs = []
if args.bulk_evaluate:
assert os.path.isdir(args.file_path), "File path must be a folder for --bulk_evaluate"
for root, dirnames, _ in os.walk(args.file_path):
if not any(f.endswith(".mp4") for f in os.listdir(root)):
continue
theorem_dirs.append(root)
elif os.path.isdir(args.file_path):
assert any(f.endswith(".mp4") for f in os.listdir(args.file_path)), "The provided folder must contain a video file"
theorem_dirs.append(args.file_path)
# Create output directory and its temp subdirectories if it doesn't exist
os.makedirs(args.output_folder, exist_ok=True)
moviepy_temp_dir = os.path.join(args.output_folder, "moviepy_temp")
os.makedirs(moviepy_temp_dir, exist_ok=True)
VideoFileClip.DEFAULT_TEMP_DIR = moviepy_temp_dir
processed_videos_dir = os.path.join(args.output_folder, "processed_videos")
os.makedirs(processed_videos_dir, exist_ok=True)
results = {}
if theorem_dirs:
for theorem_dir in theorem_dirs:
file_name, result = process_theorem(
models,
theorem_dir,
args.eval_type,
args.retry_limit,
args.target_fps,
args.use_parent_folder_as_topic,
args.output_folder
)
if result is not None:
results[file_name] = result
if not args.combine:
save_individual_result(args.output_folder, file_name, result)
else:
file_name, result = process_theorem(
models,
args.file_path,
args.eval_type,
args.retry_limit,
args.target_fps,
args.use_parent_folder_as_topic,
args.output_folder
)
if result is not None:
results[file_name] = result
if not args.combine:
save_individual_result(args.output_folder, file_name, result)
if args.combine:
if len(results) > 1:
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
combined_file = f"evaluation_{current_time}.json"
combine_results(args.output_folder, combined_file, results)
print("Combining results completed.")
else:
for file_name, result in results.items():
save_individual_result(args.output_folder, file_name, result)
os.rmdir(moviepy_temp_dir)
if __name__ == "__main__":
main()