Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[cker] Introduce ReLU6 gradient kernel #12476

Merged
merged 3 commits into from
Jan 17, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 51 additions & 0 deletions compute/cker/include/cker/train/operation/ReLU6.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef __NNFW_CKER_TRAIN_OPERATION_RELU6_H__
#define __NNFW_CKER_TRAIN_OPERATION_RELU6_H__

#include "cker/Shape.h"
#include "cker/eigen/Utils.h"
#include <Eigen/Core>

namespace nnfw
{
namespace cker
{
namespace train
{

inline void ReLU6Grad(const Shape &output_shape, const float *output_data,
const Shape &incoming_shape, const float *incoming_data,
const Shape &grad_shape, float *grad_data)
{
const auto output_map = MapAsVector(output_data, output_shape);
const auto incoming_map = MapAsVector(incoming_data, incoming_shape);
auto grad_map = MapAsVector(grad_data, grad_shape);

if (output_shape == incoming_shape && output_shape == grad_shape)
grad_map.array() =
incoming_map.array() *
(0.0f < output_map.array() && output_map.array() < 6.0f).template cast<float>();
else
throw std::runtime_error("cker::ReLUGrad: Unsupported shape");
}

} // namespace train
} // namespace cker
} // namespace nnfw

#endif // __NNFW_CKER_TRAIN_OPERATION_RELU6_H__
116 changes: 116 additions & 0 deletions compute/cker/src/train/Relu6.test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <cker/operation/ReLU6.h>
#include <cker/train/operation/ReLU6.h>

#include <gtest/gtest.h>
#include <gtest/gtest-spi.h>
#include <vector>

namespace
{

using namespace nnfw::cker;

template <typename T> class Relu6OpVerifier
{
public:
void verifyForward(const std::vector<T> &input, const std::vector<T> &expected_output)
{
assert(input.size() == expected_output.size());

std::vector<T> calc_output(input.size()); // calcuated output
ReLU6(Shape{static_cast<int>(input.size())}, input.data(), calc_output.data());

for (size_t i = 0; i < calc_output.size(); ++i)
ASSERT_EQ(expected_output[i], calc_output[i]);
}

void verifyBackward(const std::vector<T> &output, const std::vector<T> &input_bwd,
const std::vector<T> &expected_output_bwd, bool expect_eq = true)
{
std::vector<T> calc_output_bwd(input_bwd.size()); // calculated output backward
train::ReLU6Grad(Shape{static_cast<int>(output.size())}, output.data(),
Shape{static_cast<int>(input_bwd.size())}, input_bwd.data(),
Shape{static_cast<int>(calc_output_bwd.size())}, calc_output_bwd.data());

if (expect_eq)
EXPECT_EQ(expected_output_bwd, calc_output_bwd);
else
EXPECT_NE(expected_output_bwd, calc_output_bwd);
}
};

} // namespace

TEST(CKer_Operation, ReLU6)
{
{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = {-2.0, -1.0, 2.0, 3.0, 6.0, 7.0};
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

input_fwd is just for reference.
I thought with the input of forwarding, understanding the test case is much easier :)

std::vector<float> output_fwd = { 0.0, 0.0, 2.0, 3.0, 6.0, 7.0};
std::vector<float> input_bwd = {-0.1, -0.2, 0.3, 0.4, -0.1, 0.5};
std::vector<float> expected_output_bwd = { 0.0, 0.0, 0.3, 0.4, 0.0, 0.0};
// clang-format on

verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd);
}

{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = { 7.0, 8.0, 4.0, -4.0, -5.0, 10.0};
std::vector<float> output_fwd = { 6.0, 6.0, 4.0, 0.0, 0.0, 6.0};
std::vector<float> input_bwd = {-6.1, -3.3, 7.0, 8.4, -9.2, 0.0};
std::vector<float> expected_output_bwd = { 0.0, 0.0, 7.0, 0.0, 0.0, 0.0};
// clang-format on

verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd);
}
}

TEST(CKer_Operation, neg_ReLU6)
{
{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
std::vector<float> output_fwd = { 0.0, 2.0, 4.0, 6.0, 6.0, 6.0};
std::vector<float> input_bwd = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
std::vector<float> expected_output_bwd = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}; // wrong value
// clang-format on

verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd, false);
}

{
Relu6OpVerifier<float> verifier;

// clang-format off
// std::vector<float> input_fwd = { 0.0, 2.0, 4.0, 6.0, 8.0, 10.0};
std::vector<float> output_fwd = { 0.0, 2.0, 4.0, 6.0, 6.0, 6.0};
std::vector<float> input_bwd = { 0.1, 0.2, 0.3, 0.4}; // size mismatch
std::vector<float> expected_output_bwd = { 0.0, 0.2, 0.3, 0.4};
// clang-format on

EXPECT_ANY_THROW(verifier.verifyBackward(output_fwd, input_bwd, expected_output_bwd, false));
}
}