Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

JSON mode support for ollama and openai gpt #353

Merged
merged 3 commits into from
Dec 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 46 additions & 17 deletions lightrag/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,11 @@
from pydantic import BaseModel, Field
from typing import List, Dict, Callable, Any
from .base import BaseKVStorage
from .utils import compute_args_hash, wrap_embedding_func_with_attrs
from .utils import (
compute_args_hash,
wrap_embedding_func_with_attrs,
locate_json_string_body_from_string,
)

os.environ["TOKENIZERS_PARALLELISM"] = "false"

Expand Down Expand Up @@ -66,9 +70,14 @@ async def openai_complete_if_cache(
if if_cache_return is not None:
return if_cache_return["return"]

response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
if "response_format" in kwargs:
response = await openai_async_client.beta.chat.completions.parse(
model=model, messages=messages, **kwargs
)
else:
response = await openai_async_client.chat.completions.create(
model=model, messages=messages, **kwargs
)
content = response.choices[0].message.content
if r"\u" in content:
content = content.encode("utf-8").decode("unicode_escape")
Expand Down Expand Up @@ -301,7 +310,7 @@ async def ollama_model_if_cache(
model, prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
kwargs.pop("max_tokens", None)
kwargs.pop("response_format", None)
# kwargs.pop("response_format", None) # allow json
host = kwargs.pop("host", None)
timeout = kwargs.pop("timeout", None)

Expand Down Expand Up @@ -345,9 +354,9 @@ def initialize_lmdeploy_pipeline(
backend_config=TurbomindEngineConfig(
tp=tp, model_format=model_format, quant_policy=quant_policy
),
chat_template_config=ChatTemplateConfig(model_name=chat_template)
if chat_template
else None,
chat_template_config=(
ChatTemplateConfig(model_name=chat_template) if chat_template else None
),
log_level="WARNING",
)
return lmdeploy_pipe
Expand Down Expand Up @@ -458,9 +467,16 @@ async def lmdeploy_model_if_cache(
return response


class GPTKeywordExtractionFormat(BaseModel):
high_level_keywords: List[str]
low_level_keywords: List[str]


async def gpt_4o_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
if keyword_extraction:
kwargs["response_format"] = GPTKeywordExtractionFormat
return await openai_complete_if_cache(
"gpt-4o",
prompt,
Expand All @@ -471,8 +487,10 @@ async def gpt_4o_complete(


async def gpt_4o_mini_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
if keyword_extraction:
kwargs["response_format"] = GPTKeywordExtractionFormat
return await openai_complete_if_cache(
"gpt-4o-mini",
prompt,
Expand All @@ -483,45 +501,56 @@ async def gpt_4o_mini_complete(


async def azure_openai_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await azure_openai_complete_if_cache(
result = await azure_openai_complete_if_cache(
"conversation-4o-mini",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
if keyword_extraction: # TODO: use JSON API
return locate_json_string_body_from_string(result)
return result


async def bedrock_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await bedrock_complete_if_cache(
result = await bedrock_complete_if_cache(
"anthropic.claude-3-haiku-20240307-v1:0",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
if keyword_extraction: # TODO: use JSON API
return locate_json_string_body_from_string(result)
return result


async def hf_model_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await hf_model_if_cache(
result = await hf_model_if_cache(
model_name,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
**kwargs,
)
if keyword_extraction: # TODO: use JSON API
return locate_json_string_body_from_string(result)
return result


async def ollama_model_complete(
prompt, system_prompt=None, history_messages=[], **kwargs
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
if keyword_extraction:
kwargs["format"] = "json"
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
return await ollama_model_if_cache(
model_name,
Expand Down
7 changes: 3 additions & 4 deletions lightrag/operate.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
split_string_by_multi_markers,
truncate_list_by_token_size,
process_combine_contexts,
locate_json_string_body_from_string,
)
from .base import (
BaseGraphStorage,
Expand Down Expand Up @@ -461,12 +460,12 @@ async def kg_query(
use_model_func = global_config["llm_model_func"]
kw_prompt_temp = PROMPTS["keywords_extraction"]
kw_prompt = kw_prompt_temp.format(query=query, examples=examples, language=language)
result = await use_model_func(kw_prompt)
result = await use_model_func(kw_prompt, keyword_extraction=True)
logger.info("kw_prompt result:")
print(result)
try:
json_text = locate_json_string_body_from_string(result)
keywords_data = json.loads(json_text)
# json_text = locate_json_string_body_from_string(result) # handled in use_model_func
keywords_data = json.loads(result)
hl_keywords = keywords_data.get("high_level_keywords", [])
ll_keywords = keywords_data.get("low_level_keywords", [])

Expand Down
2 changes: 1 addition & 1 deletion lightrag/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def locate_json_string_body_from_string(content: str) -> Union[str, None]:
maybe_json_str = maybe_json_str.replace("\\n", "")
maybe_json_str = maybe_json_str.replace("\n", "")
maybe_json_str = maybe_json_str.replace("'", '"')
json.loads(maybe_json_str)
# json.loads(maybe_json_str) # don't check here, cannot validate schema after all
return maybe_json_str
except Exception:
pass
Expand Down