Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix many bugs #257

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions .github/workflows/pylint.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
name: Pylint

on: [push]

jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pylint
- name: Analysing the code with pylint
run: |
pylint $(git ls-files '*.py')
229 changes: 147 additions & 82 deletions data.py
Original file line number Diff line number Diff line change
@@ -1,124 +1,189 @@
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
import numpy as np
import numpy as np
import os
import glob
import cv2
import skimage.io as io
from PIL import Image
import skimage.transform as trans

Sky = [128,128,128]
Building = [128,0,0]
Pole = [192,192,128]
Road = [128,64,128]
Pavement = [60,40,222]
Tree = [128,128,0]
SignSymbol = [192,128,128]
Fence = [64,64,128]
Car = [64,0,128]
Pedestrian = [64,64,0]
Bicyclist = [0,128,192]
Unlabelled = [0,0,0]

COLOR_DICT = np.array([Sky, Building, Pole, Road, Pavement,
Tree, SignSymbol, Fence, Car, Pedestrian, Bicyclist, Unlabelled])


def adjustData(img,mask,flag_multi_class,num_class):
if(flag_multi_class):
Sky = [128, 128, 128]
Building = [128, 0, 0]
Pole = [192, 192, 128]
Road = [128, 64, 128]
Pavement = [60, 40, 222]
Tree = [128, 128, 0]
SignSymbol = [192, 128, 128]
Fence = [64, 64, 128]
Car = [64, 0, 128]
Pedestrian = [64, 64, 0]
Bicyclist = [0, 128, 192]
Unlabelled = [0, 0, 0]

COLOR_DICT = np.array(
[
Sky,
Building,
Pole,
Road,
Pavement,
Tree,
SignSymbol,
Fence,
Car,
Pedestrian,
Bicyclist,
Unlabelled,
]
)


def adjustData(img, mask, flag_multi_class, num_class):
if flag_multi_class:
img = img / 255
mask = mask[:,:,:,0] if(len(mask.shape) == 4) else mask[:,:,0]
mask = mask[:, :, :, 0] if (len(mask.shape) == 4) else mask[:, :, 0]
new_mask = np.zeros(mask.shape + (num_class,))
for i in range(num_class):
#for one pixel in the image, find the class in mask and convert it into one-hot vector
#index = np.where(mask == i)
#index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
#new_mask[index_mask] = 1
new_mask[mask == i,i] = 1
new_mask = np.reshape(new_mask,(new_mask.shape[0],new_mask.shape[1]*new_mask.shape[2],new_mask.shape[3])) if flag_multi_class else np.reshape(new_mask,(new_mask.shape[0]*new_mask.shape[1],new_mask.shape[2]))
# for one pixel in the image, find the class in mask and convert it into one-hot vector
# index = np.where(mask == i)
# index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
# new_mask[index_mask] = 1
new_mask[mask == i, i] = 1
new_mask = (
np.reshape(
new_mask,
(
new_mask.shape[0],
new_mask.shape[1] * new_mask.shape[2],
new_mask.shape[3],
),
)
if flag_multi_class
else np.reshape(
new_mask, (new_mask.shape[0] * new_mask.shape[1], new_mask.shape[2])
)
)
mask = new_mask
elif(np.max(img) > 1):
elif np.max(img) > 1:
img = img / 255
mask = mask /255
mask = mask / 255
mask[mask > 0.5] = 1
mask[mask <= 0.5] = 0
return (img,mask)



def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale",
mask_color_mode = "grayscale",image_save_prefix = "image",mask_save_prefix = "mask",
flag_multi_class = False,num_class = 2,save_to_dir = None,target_size = (256,256),seed = 1):
'''
return (img, mask)


def trainGenerator(
batch_size,
train_path,
image_folder,
mask_folder,
aug_dict,
image_color_mode="grayscale",
mask_color_mode="grayscale",
image_save_prefix="image",
mask_save_prefix="mask",
flag_multi_class=False,
num_class=2,
save_to_dir=None,
target_size=(256, 256),
seed=1,
):
"""
can generate image and mask at the same time
use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
if you want to visualize the results of generator, set save_to_dir = "your path"
'''
"""
image_datagen = ImageDataGenerator(**aug_dict)
mask_datagen = ImageDataGenerator(**aug_dict)
image_generator = image_datagen.flow_from_directory(
train_path,
classes = [image_folder],
class_mode = None,
color_mode = image_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = image_save_prefix,
seed = seed)
classes=[image_folder],
class_mode=None,
color_mode=image_color_mode,
target_size=target_size,
batch_size=batch_size,
save_to_dir=save_to_dir,
save_prefix=image_save_prefix,
seed=seed,
)
mask_generator = mask_datagen.flow_from_directory(
train_path,
classes = [mask_folder],
class_mode = None,
color_mode = mask_color_mode,
target_size = target_size,
batch_size = batch_size,
save_to_dir = save_to_dir,
save_prefix = mask_save_prefix,
seed = seed)
classes=[mask_folder],
class_mode=None,
color_mode=mask_color_mode,
target_size=target_size,
batch_size=batch_size,
save_to_dir=save_to_dir,
save_prefix=mask_save_prefix,
seed=seed,
)
train_generator = zip(image_generator, mask_generator)
for (img,mask) in train_generator:
img,mask = adjustData(img,mask,flag_multi_class,num_class)
yield (img,mask)



def testGenerator(test_path,num_image = 30,target_size = (256,256),flag_multi_class = False,as_gray = True):
for img, mask in train_generator:
img, mask = adjustData(img, mask, flag_multi_class, num_class)
yield (img, mask)


def testGenerator(
test_path,
num_image=30,
target_size=(256, 256),
flag_multi_class=False,
as_gray=True,
):
for i in range(num_image):
img = io.imread(os.path.join(test_path,"%d.png"%i),as_gray = as_gray)
img = io.imread(os.path.join(test_path, "%d.png" % i), as_gray=as_gray)
img = img / 255
img = trans.resize(img,target_size)
img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class) else img
img = np.reshape(img,(1,)+img.shape)
img = trans.resize(img, target_size)
img = np.reshape(img, img.shape + (1,)) if (not flag_multi_class) else img
img = np.reshape(img, (1,) + img.shape)
yield img


def geneTrainNpy(image_path,mask_path,flag_multi_class = False,num_class = 2,image_prefix = "image",mask_prefix = "mask",image_as_gray = True,mask_as_gray = True):
image_name_arr = glob.glob(os.path.join(image_path,"%s*.png"%image_prefix))
def geneTrainNpy(
image_path,
mask_path,
flag_multi_class=False,
num_class=2,
image_prefix="image",
mask_prefix="mask",
image_as_gray=True,
mask_as_gray=True,
):
image_name_arr = glob.glob(os.path.join(image_path, "%s*.png" % image_prefix))
image_arr = []
mask_arr = []
for index,item in enumerate(image_name_arr):
img = io.imread(item,as_gray = image_as_gray)
img = np.reshape(img,img.shape + (1,)) if image_as_gray else img
mask = io.imread(item.replace(image_path,mask_path).replace(image_prefix,mask_prefix),as_gray = mask_as_gray)
mask = np.reshape(mask,mask.shape + (1,)) if mask_as_gray else mask
img,mask = adjustData(img,mask,flag_multi_class,num_class)
for index, item in enumerate(image_name_arr):
img = io.imread(item, as_gray=image_as_gray)
img = np.reshape(img, img.shape + (1,)) if image_as_gray else img
mask = io.imread(
item.replace(image_path, mask_path).replace(image_prefix, mask_prefix),
as_gray=mask_as_gray,
)
mask = np.reshape(mask, mask.shape + (1,)) if mask_as_gray else mask
img, mask = adjustData(img, mask, flag_multi_class, num_class)
image_arr.append(img)
mask_arr.append(mask)
image_arr = np.array(image_arr)
mask_arr = np.array(mask_arr)
return image_arr,mask_arr
return image_arr, mask_arr


def labelVisualize(num_class,color_dict,img):
img = img[:,:,0] if len(img.shape) == 3 else img
def labelVisualize(num_class, color_dict, img):
img = img[:, :, 0] if len(img.shape) == 3 else img
img_out = np.zeros(img.shape + (3,))
for i in range(num_class):
img_out[img == i,:] = color_dict[i]
img_out[img == i, :] = color_dict[i]
return img_out / 255



def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2):
for i,item in enumerate(npyfile):
img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0]
io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)
def saveResult(save_path, npyfile, flag_multi_class=False, num_class=2):
for i, item in enumerate(npyfile):
img = (
labelVisualize(num_class, COLOR_DICT, item)
if flag_multi_class
else item[:, :, 0]
)
img = (img > 0.5).astype(np.uint8) # .reshape(256, 256)
img = img * 255
cv2.imwrite(os.path.join(save_path, "%d_predict.png" % i), img)
34 changes: 20 additions & 14 deletions main.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,28 @@
from model import *
from data import *

#os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"


data_gen_args = dict(rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode='nearest')
myGene = trainGenerator(2,'data/membrane/train','image','label',data_gen_args,save_to_dir = None)
data_gen_args = dict(
rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode="nearest",
)
myGene = trainGenerator(
2, "./data/membrane/train", "image", "label", data_gen_args, save_to_dir=None
)

model = unet()
model_checkpoint = ModelCheckpoint('unet_membrane.hdf5', monitor='loss',verbose=1, save_best_only=True)
model.fit_generator(myGene,steps_per_epoch=300,epochs=1,callbacks=[model_checkpoint])
model_checkpoint = ModelCheckpoint(
"unet_membrane.hdf5", monitor="loss", verbose=1, save_best_only=True
)
model.fit_generator(myGene, steps_per_epoch=300, epochs=1, callbacks=[model_checkpoint])

testGene = testGenerator("data/membrane/test")
results = model.predict_generator(testGene,30,verbose=1)
saveResult("data/membrane/test",results)
testGene = testGenerator("./data/membrane/test")
results = model.predict_generator(testGene, 30, verbose=1)
saveResult("./data/membrane/test", results)
Loading