-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlargedataset_boostpfn.py
386 lines (342 loc) · 19 KB
/
largedataset_boostpfn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#srun --cpus-per-task=4 --mem-per-cpu=4G --gres=gpu:1 --job-name=hadamard python largedataset_searchfulldatasets.py --modelname gboost_tabpfnV2 --gpu 0 --sampling_size 0.001 --test_batch 50000 --seed 5 --maxsample 500 --updating hadamard --endnum 0 --step 10 --startnum -1 --ensemble_num 1000
import time
import torch
import numpy as np
import os
import time
from scripts.model_builder import get_default_spec, save_model, load_model_only_inference
from scripts.transformer_prediction_interface import transformer_predict, get_params_from_config, TabPFNClassifier
from scripts.differentiable_pfn_evaluation import eval_model, eval_model_range
from sklearn.ensemble import BaggingClassifier
from datasets import load_openml_list, open_cc_dids, open_cc_valid_dids, test_dids_classification
import torch
from scripts import tabular_metrics
import random
import argparse
from boost_tabpfn import SamplingAdaboost
from utils import splitting_predict_proba
import logging
logger = logging.getLogger(__file__)
def get_root_logger(file=True):
format = "%(asctime)-10s %(message)s"
datefmt = "%H:%M:%S"
logging.basicConfig(format=format, datefmt=datefmt)
logger = logging.getLogger("")
logger.setLevel(logging.INFO)
if file:
handler = logging.FileHandler("log.txt")
format = logging.Formatter(format, datefmt)
handler.setFormatter(format)
logger.addHandler(handler)
return logger
def get_args():
parser = argparse.ArgumentParser(description="None")
parser.add_argument("--gpu", default=0,type=int,help="gpu index")
parser.add_argument("--seed", default=0,type=int,help="seed")
parser.add_argument("--modelname", default="tabpfn",type=str,help="modelname")#choice=["tabpfn","bagging_tabpfn","adaboost_tabfpn"]
parser.add_argument("--ensemble_num", default=10,type=int,help="ensemble")
parser.add_argument("--sampling_size", default=0.1,type=float,help="sampling size")
parser.add_argument("--replacement",action="store_true",default=False, help="whether replacement when sampling. False =不放回")
parser.add_argument("--test_batch", default=50000,type=int,help="batchsize for testing")
parser.add_argument("--batch_size", default=512,type=int,help="batchsize for minibatch training")
parser.add_argument("--train_portion", default=0.01,type=float,help="training portion")
parser.add_argument("--maxsample", default=500,type=int,help="maxsample for training")
parser.add_argument("--loss", default="CE",type=str,help="loss for gboost")#loss for gboost## MSE,CE
parser.add_argument("--updating", default="exphadamard",type=str,help="weight updating for gboost ")#updating for gboost ##adaboost,hadamard,exphadamard
parser.add_argument("--wl_num", default=2,type=int,help="number of weaklearners sampled in each round, only used for V4")
parser.add_argument("--debug",default=False, action = 'store_true')
parser.add_argument("--startnum", default=0,type=int,help="start num from aindex, use 10 datasets")
parser.add_argument("--step", default=10,type=int,help="how many datasets run in a row")
parser.add_argument("--endnum", default=0,type=int,help="start num from aindex, use 10 datasets")
args = parser.parse_args()
return args
if __name__=="__main__":
logger=get_root_logger()
baselinemodels=["LightGBM","autogluon","XGBoost"]
args=get_args()
base_path = '.'
max_samples = 10000000
#####from high instances to low
final_idxs=[125,133,136,138,147,155,156,157,158,161,162,266,1177,1179,1240,1502,1597,40515,40520,40672,41960,42206,42397,42746,45654,45665,45669]
if args.startnum<0:
###最终选定的数据集,通过endnum和step的方法选择
if args.step ==0:
run_indexes=final_idxs
else:
if args.endnum+args.step>len(final_idxs):
run_indexes=final_idxs[args.endnum:]
else:
run_indexes=final_idxs[args.endnum:args.endnum+args.step]
else:
raise KeyError
# good_indexes=[]
# bad_indexes=[]
# for ind in run_indexes:
# try:
# cc_test_datasets_multiclass, cc_test_datasets_multiclass_df = load_openml_list(args,[ind], multiclass=True, shuffled=True, filter_for_nan=False, max_samples = max_samples, num_feats=100, return_capped=True)
# good_indexes.append(ind)
# except:
# bad_indexes.append(ind)
# logger.warning(f"###############bad index {ind}###################")
# continue
cc_test_datasets_multiclass, cc_test_datasets_multiclass_df = load_openml_list(args,run_indexes, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = max_samples, num_feats=100, return_capped=True)
# Loading longer OpenML Datasets for generalization experiments (optional)
# test_datasets_multiclass, test_datasets_multiclass_df = load_openml_list(test_dids_classification, multiclass=True, shuffled=True, filter_for_nan=False, max_samples = 10000, num_feats=100, return_capped=True)
model_string, longer, task_type = '', 1, 'multiclass'
eval_positions = [1000]
N_en=1
test_datasets= cc_test_datasets_multiclass
# [(i, test_datasets[i][0]) for i in range(len(test_datasets))]
if args.gpu>-1:
device=f"cuda:{args.gpu}"
else:
device="cpu"
def set_seed(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(args.seed)
ensemblenum=args.ensemble_num
datasetnames=[]
shapes=[]
rocs=[]
ces=[]
accs=[]
times=[]
modelname=args.modelname
datasetportion=args.sampling_size
# modelname="tabpfn"
fail_datasets=[]
logger.warning(f"#################################running model {modelname}#################################")
for i in range(len(test_datasets)):
datasetportion=args.sampling_size
evaluation_dataset_index = i # Index of the dataset to predict
datasetidx=run_indexes[i]
ds = test_datasets[evaluation_dataset_index]
logger.warning(f'Evaluation dataset name: {ds[0]} shape {ds[1].shape}')
xs, ys = ds[1].clone(), ds[2].clone()
eval_position = xs.shape[0] // 2
train_xs, train_ys = xs[0:eval_position], ys[0:eval_position]
test_xs, test_ys = xs[eval_position:], ys[eval_position:]
starttime=time.time()
try:
if modelname=="tabpfn":
import math
vec=np.arange(train_xs.size(0))
idx=np.array([])
num_trains=train_xs.size(0)
for classnum in np.unique(train_ys):
classidx=train_ys==classnum
vec_class=vec[classidx]
num_classsample=vec_class.shape[0]
samplesize=math.ceil(args.maxsample/num_trains*num_classsample)
samplesize=min(samplesize,num_classsample)
sampler_weights_class=np.ones(num_classsample)/num_classsample
idx_class=np.random.choice(vec_class,size=samplesize,replace=args.replacement, p=sampler_weights_class)
idx=np.append(idx,idx_class)
train_xs=train_xs[idx]
train_ys=train_ys[idx]
classifier = TabPFNClassifier(device=device,N_ensemble_configurations=N_en)
classifier.fit(train_xs, train_ys,overwrite_warning=True)
prediction_ =splitting_predict_proba(classifier,test_xs,test_batch=args.test_batch)
elif modelname=="tabpfn_onetime":
classifier = TabPFNClassifier(device=device,N_ensemble_configurations=N_en)
classifier.fit(train_xs, train_ys)
prediction_ =splitting_predict_proba(classifier,test_xs,test_batch=args.test_batch)
elif modelname=="bagging_tabpfn":
datasetportion=args.sampling_size
maxsample=args.maxsample
datasetportion=maxsample/train_xs.shape[0]
try:
classifier=BaggingClassifier(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),n_estimators=ensemblenum,max_samples=datasetportion,bootstrap=args.replacement)
# import ipdb
# ipdb.set_trace()
classifier.fit(train_xs, train_ys)
prediction_ = splitting_predict_proba(classifier,test_xs,test_batch=args.test_batch,bagging=True)
except:
from baggingself import SamplingBagging
classifier=SamplingBagging(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),n_estimators=ensemblenum,max_samples=maxsample,batch_test=args.test_batch,return_logits=False, args=args)
# import ipdb
# ipdb.set_trace()
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
# try:
# datasetportion=0.15
# classifier=BaggingClassifier(TabPFNClassifier(device=device,),n_estimators=ensemblenum,max_samples=datasetportion)
# classifier.fit(train_xs, train_ys)
# prediction_ = classifier.predict_proba(test_xs)
# except:
# datasetportion=0.2
# classifier=BaggingClassifier(TabPFNClassifier(device=device,),n_estimators=ensemblenum,max_samples=datasetportion)
# classifier.fit(train_xs, train_ys)
# prediction_ = classifier.predict_proba(test_xs)
elif modelname=="adaboost_tabpfn":
datasetportion=args.sampling_size
classifier=SamplingAdaboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="newadaboost_tabpfn":
datasetportion=args.sampling_size
classifier=SamplingAdaboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch,new=True)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="adaboost_bagging_tabpfn":
datasetportion=args.sampling_size
classifier=SamplingAdaboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,bagging=True)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = splitting_predict_proba(classifier,test_xs,test_batch=args.test_batch)
elif modelname=="minibatch_tabpfn":
from minibatch_tabpfn import MiniBatch
datasetportion=args.sampling_size
classifier=MiniBatch(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),args,args.batch_size,train_portion=args.train_portion,split_test=True,batch_test=args.test_batch)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="adaboostnoweight_tabpfn":
from boost_tabpfn_noweight import SamplingAdaboost_noweight
datasetportion=args.sampling_size
classifier=SamplingAdaboost_noweight(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="gboostnoweight_tabpfn":
from gradient_boost_tabpfn_noweight import SamplingGradientboost_noweight
datasetportion=args.sampling_size
classifier=SamplingGradientboost_noweight(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="gboost_tabpfn":
from gradient_boost_tabpfn import SamplingGradientboost
datasetportion=args.sampling_size
classifier=SamplingGradientboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="gboost_tabpfnV2":
from gradient_boost_tabpfn import SamplingGradientboost
datasetportion=args.sampling_size
classifier=SamplingGradientboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch,version=2)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="gboost_tabpfnV3":
from gradient_boost_tabpfn import SamplingGradientboost
datasetportion=args.sampling_size
classifier=SamplingGradientboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch,version=3)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="gboost_tabpfnV4":
from gradient_boost_tabpfn import SamplingGradientboost
datasetportion=args.sampling_size
classifier=SamplingGradientboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch,version=4)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
elif modelname=="gboost_tabpfnV5":
from gradient_boost_tabpfn import SamplingGradientboost
datasetportion=args.sampling_size
classifier=SamplingGradientboost(TabPFNClassifier(device=device,N_ensemble_configurations=N_en),ensemblenum,args.sampling_size,args,split_test=True,
max_samples=args.maxsample,
batch_test=args.test_batch,version=5)
classifier.fit(train_xs, train_ys,test_xs)
prediction_ = classifier.predict_proba(test_xs)
else:
raise KeyError
except:
logger.warning(f"########################prediction failure on {ds[0]}################################")
if args.debug:
raise
fail_datasets.append(ds[0])
datasetnames.append(ds[0])
shapes.append(ds[1].shape)
rocs.append(0.0)
ces.append(0.0)
accs.append(0.0)
times.append(0.0)
continue
roc= tabular_metrics.auc_metric(test_ys, prediction_)
acc=tabular_metrics.accuracy_metric(test_ys, prediction_)
prediction_[prediction_>1]=1
prediction_[prediction_<0]=0
ce=tabular_metrics.cross_entropy(test_ys, prediction_)
roc=float(roc)
ce=float(ce)
endtime=time.time()
# 'AUC', float(roc), 'Cross Entropy', float(ce)
logger.warning(f"roc: {roc} CE: {ce}")
logger.warning(f"consuming time : {endtime-starttime}")
datasetnames.append(ds[0])
shapes.append(ds[1].shape)
rocs.append(roc)
ces.append(ce)
accs.append(acc)
times.append(endtime-starttime)
datasetportion=args.sampling_size
if modelname=="tabpfn":
savedir=f"largeresults/{min(run_indexes)}_{max(run_indexes)}_{args.modelname}_{N_en}_{args.maxsample}"
resultname=f"{savedir}/{args.seed}.txt"
if not os.path.exists(savedir):
os.mkdir(savedir)
elif modelname=="minibatch_tabpfn":
resultname=f"largeresults/{args.modelname}_{args.batch_size}x{args.train_portion}/{args.seed}.txt"
savedir=f"largeresults/{args.modelname}_{args.batch_size}x{args.train_portion}"
if not os.path.exists(savedir):
os.mkdir(savedir)
elif modelname.startswith("gboost_tabpfn"):
savedir=f"largeresults/{min(run_indexes)}_{max(run_indexes)}_{args.modelname}_{N_en}_{datasetportion}x{ensemblenum}_{args.loss}x{args.updating}_{args.maxsample}"
resultname=f"{savedir}/{args.seed}.txt"
if "4" in modelname:
savedir=f"largeresults/{args.modelname}_{datasetportion}x{ensemblenum}_{args.loss}x{args.updating}_{args.maxsample}_wl={args.wl_num}"
resultname=savedir+f"/{args.seed}.txt"
if not os.path.exists(savedir):
os.mkdir(savedir)
else:
if args.replacement==True:
savedir=f"largeresults/{min(run_indexes)}_{max(run_indexes)}_{args.modelname}_{N_en}_{datasetportion}x{ensemblenum}_{args.maxsample}_replacement={args.replacement}"
else:
savedir=f"largeresults/{min(run_indexes)}_{max(run_indexes)}_{args.modelname}_{N_en}__{datasetportion}x{ensemblenum}_{args.maxsample}"
resultname=f"{savedir}/{args.seed}.txt"
if not os.path.exists(savedir):
os.mkdir(savedir)
with open(resultname,"w") as f:
f.write("| |")
for datasetname in datasetnames:
f.write(f" {datasetname} |")
f.write("\n")
f.write("| -------- |")
for datasetname in datasetnames:
f.write(" -------- |")
f.write("\n")
if modelname=="tabpfn":
f.write(f"|{modelname}|")
elif modelname=="minibatch_tabpfn":
f.write(f"|{modelname},{args.batch_size},{args.train_portion}|")
else:
f.write(f"|{modelname},{datasetportion}x{ensemblenum},{args.maxsample}|")
for roc in rocs:
f.write(" {:.4} |".format(roc))
f.write("\n")
f.write(f"|{modelname},ce|")
for ce in ces:
f.write(" {:.4} |".format(ce))
f.write("\n")
f.write(f"|{modelname},acc|")
for acc in accs:
f.write(" {:.4} |".format(acc))
f.write("\n")
f.write(f"|{modelname},time(s)|")
for t in times:
f.write(" {:.4} |".format(t))
logger.warning(f"saved results for {modelname}")