-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradient_boost_tabpfn.py
683 lines (609 loc) · 28.9 KB
/
gradient_boost_tabpfn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import matplotlib.pyplot as plt
import numpy as np
import torch
import copy
import time
import numpy as np
from scipy.optimize import minimize
from joblib import Parallel,delayed
from scripts import tabular_metrics
from sklearn.ensemble._gb_losses import LeastSquaresError,BinomialDeviance,ExponentialLoss,MultinomialDeviance
from scipy.special import logsumexp
# def loss_function(y, y_pred):
# """
# 定义损失函数,这里假设是平方损失
# """
# return np.sum((y - y_pred) ** 2)
# def CEloss_function(y, y_pred):##
# """
# 定义损失函数,这里假设是平方损失
# """
# return torch.nn.functional.nll_loss(torch.softmax(y_pred,dim=-1),y,reduction="sum")
# def objective_function(gamma, y, F_prev, h):
# """
# 定义优化目标函数
# """
# y_pred = F_prev + gamma * h
# return CEloss_function(y, y_pred)
# # 示例用法
# # 假设你有训练数据 X, y 和上一轮的预测 F_prev,以及一个新的弱学习器 h
# X = np.random.rand(100, 10)
# y = np.random.randint(0, 2, size=100)
# F_prev = np.random.rand(100)
# h = np.random.rand(100)
# # 更新模型
# gamma_optimal = update_model(X, y, F_prev, h)
def check_classnum(idx,y):
if len(np.unique(y[idx])) !=len(np.unique(y)) :
return False
else:
return np.all(np.equal(np.unique(y[idx]),np.unique(y)))
from utils import splitting_predict_proba
class SamplingGradientboost():
def __init__(
self,
estimator=None,
n_estimators=50,
sampling_size=0.1,
args=None,
bagging=False,
split_test=False,
max_samples=500,
batch_test=15000,
return_logits=True,
version=1,
):
self.sampling_size=sampling_size
self.T=n_estimators
self.estimator_=estimator
self.args=args
if args is None:
self.replacement=False
else:
self.replacement=args.replacement
self.samplers=[]
self.sampled_idxs=[]
self.alphas=[]
self.ws=[]
self.test_probas=[]
self.eps=np.finfo(np.float32).eps
self.bagging=bagging
self.num_bags=10
self.split_test=split_test
self.max_samples=max_samples
self.batch_test=batch_test
self.loss=args.loss
self.return_logits=return_logits
self.updating=args.updating
self.version=version
self.wl_num=args.wl_num
self.debug=args.debug
if self.debug:
self.boost_residuals=[]
self.boost_loss=[]
self.test_boost_loss=[]
self.test_boost_residuals = []
self.train_auc=[]
self.test_auc=[]
self.test_F_prev=[]
def get_weak_learner(self,sampler_weights,X,y,X_test):
num_trains=X.size(0)
num_test=X_test.size(0)
num_classes=int(y.max()+1)
vec=np.arange(num_trains)
if self.split_test:
sample_num=self.max_samples
else:
sample_num=min(int(self.sampling_size*num_trains),self.max_samples)##sample_num should be less than max_samples
if self.bagging:##this can be paralleled in future
# final_proba_all=0
# for bags in range(self.num_bags):
# idx=np.random.choice(vec,size=sample_num,replace=self.replacement, p=sampler_weights)
# while True:
# if check_classnum(idx,y):
# break
# else:
# idx=np.random.choice(vec,size=sample_num,replace=self.replacement, p=sampler_weights)
# estimator_=self.estimator_
# estimator_.fit(X[idx],y[idx])
# proba_all=splitting_predict_proba(estimator_,np.concatenate([X,X_test],axis=0),self.batch_test,return_logits=self.return_logits)
# final_proba_all=proba_all+final_proba_all
# proba_all=final_proba_all/self.num_bags
pass
else:
try:
idx=np.random.choice(vec,size=sample_num,replace=self.replacement, p=sampler_weights)
except:
import ipdb
ipdb.set_trace()
if check_classnum(idx,y):
estimator_=self.estimator_
estimator_.fit(X[idx],y[idx],overwrite_warning=True)
proba_all=splitting_predict_proba(estimator_,np.concatenate([X,X_test],axis=0),self.batch_test,return_logits=self.return_logits)
elif self.version==5:
print("adding ")
### choice 2 :add not sampled class to train_dataset
not_sampledclass=np.setdiff1d(np.unique(y),np.unique(y[idx]))
for classnum in not_sampledclass:
classidx=y==classnum
vec_class=vec[classidx]
sampler_weights_class=sampler_weights[classidx]
sampler_weights_class=sampler_weights_class/np.sum(sampler_weights_class)
idx_class=np.random.choice(vec_class,size=1,replace=self.replacement, p=sampler_weights_class)
idx=np.append(idx,idx_class[0])
estimator_=self.estimator_
estimator_.fit(X[idx],y[idx],overwrite_warning=True)
proba_all=splitting_predict_proba(estimator_,np.concatenate([X,X_test],axis=0),self.batch_test,return_logits=self.return_logits)
else:
new_class_idx=np.unique(y[idx])
# ############
proba_all=np.zeros((num_trains+num_test,num_classes))
if len(new_class_idx)==1 and not self.split_test:###for small dataset resample ###this is aimed for the condition that only sample one class
resample=0
while True:
idx=np.random.choice(vec,size=sample_num,replace=self.replacement, p=sampler_weights)
new_class_idx=np.unique(y[idx])
if len(new_class_idx)>1:
estimator_=self.estimator_
estimator_.fit(X[idx],y[idx],overwrite_warning=True)
proba_all_predictor=estimator_.predict_proba(np.concatenate([X,X_test],axis=0),return_logits=self.return_logits)
for newidx in range(len(new_class_idx)):
proba_all[:,int(new_class_idx[newidx])]=proba_all_predictor[:,newidx]
break
else:
resample+=1
if resample>100:
if self.return_logits:
proba_all[:,int(new_class_idx[0])]=99
else:
proba_all[:,int(new_class_idx[0])]=1
break
# import ipdb
# ipdb.set_trace()
else:##using estimator
estimator_=self.estimator_
estimator_.fit(X[idx],y[idx],overwrite_warning=True)
proba_all_predictor=splitting_predict_proba(estimator_,np.concatenate([X,X_test],axis=0),self.batch_test,return_logits=self.return_logits)
for newidx in range(len(new_class_idx)):
proba_all[:,new_class_idx[newidx]]=proba_all_predictor[:,newidx]###give zero probability for not sampled class
# predict=estimator_.predict(np.concatenate([X,X_test],axis=0))
# import ipdb
# ipdb.set_trace()
return proba_all,idx
def get_weak_learners(self,ws_list,X,y,X_test,residuals):
###get weaklearners and compare to find the best one.
num_trains=X.size(0)
bestdistance=9999
new_sampler_weights=ws_list[-1]
best_proba_all,best_idx=None,None
for i in range(self.wl_num):
proba_all,idx=self.get_weak_learner(new_sampler_weights,X,y,X_test)
train_proba=proba_all[:num_trains]
distance=np.linalg.norm(train_proba-residuals)
if distance<bestdistance:
bestdistance=distance
best_proba_all,best_idx=proba_all,idx
return best_proba_all,best_idx
def get_3weak_learners(self,X,y,X_test,residuals):
###get weaklearners and compare to find the best one.
num_trains=X.size(0)
bestdistance=9999
past_sampler_weights=self.ws[-2]
new_sampler_weights=self.ws[-1]
uniformweights=np.ones(num_trains)/num_trains
best_proba_all,best_idx=None,None
learners=[uniformweights,past_sampler_weights,new_sampler_weights]
for i in range(len(learners)):
idxweights=learners[i]
proba_all,idx=self.get_weak_learner(idxweights,X,y,X_test)
train_proba=proba_all[:num_trains]
distance=np.linalg.norm(train_proba-residuals)
if distance<bestdistance:
bestdistance=distance
best_proba_all,best_idx=proba_all,idx
best_weights=idxweights
##rewrite this round's weights
self.ws.pop()
self.ws.append(best_weights)
return best_proba_all,best_idx
def get_init_raw_predictions(self,y_pred):
eps = np.finfo(np.float32).eps
probas = np.clip(y_pred, eps, 1 - eps)
raw_predictions = np.log(probas).astype(np.float64)
return raw_predictions
def update_model(self,y, F_prev, h):
"""
更新模型参数
"""
result = minimize(
lambda gamma: self.loss_(y,F_prev+gamma*h),
x0=0.0, # 初始猜测值
method='L-BFGS-B' # 选择适当的优化方法
)
gamma_optimal = result.x[0]
return gamma_optimal
def fit(self,X,y,X_test):
##
num_trains=X.size(0)
num_classes=int(y.max()+1)
if self.loss=="CE":
self.loss_=MultinomialDeviance(num_classes)
# if num_classes>2:
# self.loss_=MultinomialDeviance(num_classes)
# else:
# self.loss_=BinomialDeviance(num_classes)
elif self.loss=="MSE":
self.loss_=LeastSquaresError()
elif self.loss=="EXP":
raise NotImplementedError
else:
raise KeyError
self.ws.append(np.ones(num_trains)/num_trains)
self.F_prev=[]
if self.debug:##initial residuals
residuals=[]
for k in range(num_classes):
target_y = np.array(y == k, dtype=np.float64)
residuals.append(self.loss_.negative_gradient(target_y,np.zeros([num_trains,num_classes]),k))
residuals=np.stack(residuals,axis=-1)
# if num_classes>2:
# residuals=[]
# for k in range(num_classes):
# target_y = np.array(y == k, dtype=np.float64)
# residuals.append(self.loss_.negative_gradient(target_y,np.zeros([num_trains,num_classes]),k))
# residuals=np.stack(residuals,axis=-1)
# else:
# residuals=self.loss_.negative_gradient(y,np.zeros([num_trains,num_classes]))
self.boost_residuals.append(residuals)
pass
for i in range(self.T):# boosting
sampler_weights=self.ws[i]
if self.version==4:
if i==0:
proba_all,idx=self.get_weak_learner(sampler_weights,X,y,X_test,)##don't need to compare at first round
else:
proba_all,idx=self.get_weak_learners(self.ws,X,y,X_test,self.residuals)
elif self.version==7:
if i==0:
proba_all,idx=self.get_weak_learner(sampler_weights,X,y,X_test,)##don't need to compare at first round
else:
proba_all,idx=self.get_3weak_learners(X,y,X_test,self.residuals)
else:
proba_all,idx=self.get_weak_learner(sampler_weights,X,y,X_test)
test_proba=proba_all[num_trains:]
train_proba=proba_all[:num_trains]
try:
y_pred=train_proba
except:
raise ValueError
if len(self.F_prev)==0:
F_pred=np.zeros_like(y_pred)
else:##boosting, find gamma_t
F_pred=self.F_prev[-1]
h=y_pred
try:
gamma_t=self.update_model(y, F_pred, h)
except:
if self.args.debug:
raise
pass
# import ipdb
# ipdb.set_trace()
self.F_prev.append(F_pred + gamma_t * h)
if self.debug:
train_proba_proba =torch.softmax(torch.Tensor(self.F_prev[-1]),dim=-1).numpy()
self.train_auc.append(tabular_metrics.auc_metric(y,train_proba_proba))
self.boost_loss.append(self.loss_(y,F_pred + gamma_t * h))
###get testresults
if len(self.test_F_prev)==0:
test_F_pred=np.zeros_like(test_proba)
else:##boosting, find gamma_t
test_F_pred=self.test_F_prev[-1]
self.test_F_prev.append(test_F_pred + gamma_t * test_proba)
self.alphas.append(gamma_t)##get alpha_t
self.sampled_idxs.append(idx)##save sampled results
self.test_probas.append(test_proba)##save test proba.
next_sampler_weights=copy.deepcopy(sampler_weights)
residuals=[]
if self.version==1:
for k in range(num_classes):
target_y = np.array(y == k, dtype=np.float64)
residuals.append(self.loss_.negative_gradient(target_y,F_pred,k))
else:
for k in range(num_classes):
target_y = np.array(y == k, dtype=np.float64)
residuals.append(self.loss_.negative_gradient(target_y,F_pred + gamma_t * h,k))
residuals=np.stack(residuals,axis=-1)
# if num_classes>2:
# if self.version==1:
# for k in range(num_classes):
# target_y = np.array(y == k, dtype=np.float64)
# residuals.append(self.loss_.negative_gradient(target_y,F_pred,k))
# else:
# for k in range(num_classes):
# target_y = np.array(y == k, dtype=np.float64)
# residuals.append(self.loss_.negative_gradient(target_y,F_pred + gamma_t * h,k))
# residuals=np.stack(residuals,axis=-1)
# else:
# residuals=self.loss_.negative_gradient(target_y,F_pred + gamma_t * h)
self.residuals=residuals###save residual for next round
# import ipdb
# ipdb.set_trace()
if self.version==3:
target_residuals=np.linalg.norm(residuals,axis=-1)
else:
target_residuals=residuals[range(num_trains),y.int()]
if self.debug:
self.boost_residuals.append((residuals,target_residuals))
### updating weights based on residuals
if self.updating=="adaboost":
###adaboost updating
#adding updating weights
pred=np.argmax(proba_all[:num_trains],axis=1)
true_idx=torch.Tensor(pred)==torch.Tensor(y)
false_idx=~true_idx
#
# eps_t=sum(sampler_weights[false_idx])
eps_t=sum(sampler_weights[false_idx])
alpha_t=np.log(((1-eps_t)+self.eps)/(eps_t+self.eps)) + np.log(num_classes-1)
next_sampler_weights[true_idx]=sampler_weights[true_idx]*np.exp(-alpha_t)
next_sampler_weights[false_idx]=sampler_weights[false_idx]*np.exp(alpha_t)
# # Z_norm=np.sum(next_sampler_weights)
#######residual updating
##residual for CE loss
elif self.updating=="hadamard":
if self.version==6:
pred=np.argmax(proba_all[:num_trains],axis=1)
true_idx=torch.Tensor(pred)==torch.Tensor(y)
false_idx=~true_idx
#
# eps_t=sum(sampler_weights[false_idx])
# eps_t=np.sum(target_residuals)
alpha_t=np.sum(np.abs(target_residuals))
next_sampler_weights[true_idx]=sampler_weights[true_idx]*(-alpha_t)
next_sampler_weights[false_idx]=sampler_weights[false_idx]*(alpha_t)
# # Z_norm=np.sum(next_sampler_weights)
else:
next_sampler_weights=next_sampler_weights*(target_residuals)+self.eps
elif self.updating=="exphadamard":
if self.version==6:
pred=np.argmax(proba_all[:num_trains],axis=1)
true_idx=torch.Tensor(pred)==torch.Tensor(y)
false_idx=~true_idx
#
# eps_t=sum(sampler_weights[false_idx])
# eps_t=np.sum(target_residuals)
alpha_t=np.sum(np.abs(target_residuals))
next_sampler_weights[true_idx]=sampler_weights[true_idx]*np.exp(-alpha_t)
next_sampler_weights[false_idx]=sampler_weights[false_idx]*np.exp(alpha_t)
else:
next_sampler_weights=next_sampler_weights*np.exp(target_residuals)
# if np.isinf(next_sampler_weights).any():
# import ipdb
# ipdb.set_trace()
# next_sampler_weights[np.isinf(next_sampler_weights)]=1/self.eps
elif self.updating=="loghadamard":
next_sampler_weights=next_sampler_weights*np.log(target_residuals)+self.eps
elif self.updating=="none":
pass
else:
raise KeyError
if np.isinf(next_sampler_weights).any():
import ipdb
ipdb.set_trace()
next_sampler_weights=next_sampler_weights/sum(next_sampler_weights)
eps = self.eps
next_sampler_weights = np.clip(next_sampler_weights, eps, 1 - eps)
next_sampler_weights=next_sampler_weights/sum(next_sampler_weights)
if np.isnan(next_sampler_weights).any():
import ipdb
ipdb.set_trace()
self.ws.append(next_sampler_weights.astype(np.float64))
def fit_debug(self,X,y,X_test,y_test):
##
num_trains=X.size(0)
num_classes=int(y.max()+1)
if self.loss=="CE":
self.loss_=MultinomialDeviance(num_classes)
# if num_classes>2:
# self.loss_=MultinomialDeviance(num_classes)
# else:
# self.loss_=BinomialDeviance(num_classes)
elif self.loss=="MSE":
self.loss_=LeastSquaresError()
elif self.loss=="EXP":
raise NotImplementedError
else:
raise KeyError
self.ws.append(np.ones(num_trains)/num_trains)
self.F_prev=[]
if self.debug:##initial residuals
residuals=[]
for k in range(num_classes):
target_y = np.array(y == k, dtype=np.float64)
residuals.append(self.loss_.negative_gradient(target_y,np.zeros([num_trains,num_classes]),k))
residuals=np.stack(residuals,axis=-1)
self.boost_residuals.append(residuals)
residuals=[]
for k in range(num_classes):
target_y = np.array(y == k, dtype=np.float64)
residuals.append(self.loss_.negative_gradient(target_y,np.zeros([num_trains,num_classes]),k))
residuals=np.stack(residuals,axis=-1)
self.test_boost_residuals.append(residuals)
pass
for i in range(self.T):# boosting
sampler_weights=self.ws[i]
if self.version==4:
if i==0:
proba_all,idx=self.get_weak_learner(sampler_weights,X,y,X_test,)##don't need to compare at first round
else:
proba_all,idx=self.get_weak_learners(self.ws,X,y,X_test,self.residuals)
elif self.version==7:
if i==0:
proba_all,idx=self.get_weak_learner(sampler_weights,X,y,X_test,)##don't need to compare at first round
else:
proba_all,idx=self.get_3weak_learners(X,y,X_test,self.residuals)
else:
proba_all,idx=self.get_weak_learner(sampler_weights,X,y,X_test)
test_proba=proba_all[num_trains:]
train_proba=proba_all[:num_trains]
try:
y_pred=train_proba
except:
raise ValueError
if len(self.F_prev)==0:
F_pred=np.zeros_like(y_pred)
else:##boosting, find gamma_t
F_pred=self.F_prev[-1]
h=y_pred
try:
gamma_t=self.update_model(y, F_pred, h)
except:
if self.args.debug:
raise
pass
# import ipdb
# ipdb.set_trace()
self.F_prev.append(F_pred + gamma_t * h)
if self.debug:
train_proba_proba =torch.softmax(torch.Tensor(self.F_prev[-1]),dim=-1).numpy()
self.train_auc.append(tabular_metrics.auc_metric(y,train_proba_proba))
self.boost_loss.append(self.loss_(y,F_pred + gamma_t * h))
###get testresults
if len(self.test_F_prev)==0:
test_F_pred=np.zeros_like(test_proba)
else:##boosting, find gamma_t
test_F_pred=self.test_F_prev[-1]
self.test_F_prev.append(test_F_pred + gamma_t * test_proba)
self.test_boost_loss.append(self.loss_(y_test,test_F_pred + gamma_t * test_proba))
self.alphas.append(gamma_t)##get alpha_t
self.sampled_idxs.append(idx)##save sampled results
self.test_probas.append(test_proba)##save test proba.
next_sampler_weights=copy.deepcopy(sampler_weights)
residuals=[]
if self.version==1:
for k in range(num_classes):
target_y = np.array(y == k, dtype=np.float64)
residuals.append(self.loss_.negative_gradient(target_y,F_pred,k))
else:
for k in range(num_classes):
target_y = np.array(y == k, dtype=np.float64)
residuals.append(self.loss_.negative_gradient(target_y,F_pred + gamma_t * h,k))
residuals=np.stack(residuals,axis=-1)
# if num_classes>2:
# if self.version==1:
# for k in range(num_classes):
# target_y = np.array(y == k, dtype=np.float64)
# residuals.append(self.loss_.negative_gradient(target_y,F_pred,k))
# else:
# for k in range(num_classes):
# target_y = np.array(y == k, dtype=np.float64)
# residuals.append(self.loss_.negative_gradient(target_y,F_pred + gamma_t * h,k))
# residuals=np.stack(residuals,axis=-1)
# else:
# residuals=self.loss_.negative_gradient(target_y,F_pred + gamma_t * h)
self.residuals=residuals###save residual for next round
# import ipdb
# ipdb.set_trace()
if self.version==3:
target_residuals=np.linalg.norm(residuals,axis=-1)
else:
target_residuals=residuals[range(num_trains),y.int()]
if self.debug:
self.boost_residuals.append((residuals,target_residuals))
### updating weights based on residuals
if self.updating=="adaboost":
###adaboost updating
#adding updating weights
pred=np.argmax(proba_all[:num_trains],axis=1)
true_idx=torch.Tensor(pred)==torch.Tensor(y)
false_idx=~true_idx
#
# eps_t=sum(sampler_weights[false_idx])
eps_t=sum(sampler_weights[false_idx])
alpha_t=np.log(((1-eps_t)+self.eps)/(eps_t+self.eps)) + np.log(num_classes-1)
next_sampler_weights[true_idx]=sampler_weights[true_idx]*np.exp(-alpha_t)
next_sampler_weights[false_idx]=sampler_weights[false_idx]*np.exp(alpha_t)
# # Z_norm=np.sum(next_sampler_weights)
#######residual updating
##residual for CE loss
elif self.updating=="hadamard":
if self.version==6:
pred=np.argmax(proba_all[:num_trains],axis=1)
true_idx=torch.Tensor(pred)==torch.Tensor(y)
false_idx=~true_idx
#
# eps_t=sum(sampler_weights[false_idx])
# eps_t=np.sum(target_residuals)
alpha_t=np.sum(np.abs(target_residuals))
next_sampler_weights[true_idx]=sampler_weights[true_idx]*(-alpha_t)
next_sampler_weights[false_idx]=sampler_weights[false_idx]*(alpha_t)
# # Z_norm=np.sum(next_sampler_weights)
else:
next_sampler_weights=next_sampler_weights*(target_residuals)+self.eps
elif self.updating=="exphadamard":
if self.version==6:
pred=np.argmax(proba_all[:num_trains],axis=1)
true_idx=torch.Tensor(pred)==torch.Tensor(y)
false_idx=~true_idx
#
# eps_t=sum(sampler_weights[false_idx])
# eps_t=np.sum(target_residuals)
alpha_t=np.sum(np.abs(target_residuals))
next_sampler_weights[true_idx]=sampler_weights[true_idx]*np.exp(-alpha_t)
next_sampler_weights[false_idx]=sampler_weights[false_idx]*np.exp(alpha_t)
else:
next_sampler_weights=next_sampler_weights*np.exp(target_residuals)
# if np.isinf(next_sampler_weights).any():
# import ipdb
# ipdb.set_trace()
# next_sampler_weights[np.isinf(next_sampler_weights)]=1/self.eps
elif self.updating=="loghadamard":
next_sampler_weights=next_sampler_weights*np.log(target_residuals)+self.eps
elif self.updating=="none":
pass
else:
raise KeyError
if np.isinf(next_sampler_weights).any():
import ipdb
ipdb.set_trace()
next_sampler_weights=next_sampler_weights/sum(next_sampler_weights)
eps = self.eps
next_sampler_weights = np.clip(next_sampler_weights, eps, 1 - eps)
next_sampler_weights=next_sampler_weights/sum(next_sampler_weights)
if np.isnan(next_sampler_weights).any():
import ipdb
ipdb.set_trace()
self.ws.append(next_sampler_weights.astype(np.float64))
def predict(self, X):
predicted_probabilitiy = self.predict_proba(X)
return self.classes_.take((np.argmax(predicted_probabilitiy, axis=1)), axis=0)
def predict_proba(self, X):
all_probas=[self.alphas[i]*self.test_probas[i] for i in range(len(self.alphas))]
# all_probas=Parallel(n_jobs=32)(delayed(lambda x : self.alphas[x]*self.test_probas[x])(i) for i in range(len(self.alphas)) )
all_proba=torch.Tensor(np.array(sum(all_probas)))
# Reduce
# import ipdb
# ipdb.set_trace()
proba =torch.softmax(all_proba,dim=-1).numpy()
# import ipdb
# ipdb.set_trace()
return proba
def predict_proba_debug(self, X,y=None):
all_probas=[self.alphas[i]*self.test_probas[i] for i in range(len(self.alphas))]
# all_probas=Parallel(n_jobs=32)(delayed(lambda x : self.alphas[x]*self.test_probas[x])(i) for i in range(len(self.alphas)) )
all_proba=torch.Tensor(np.array(sum(all_probas)))
if self.debug:
for i in range(len(self.test_F_prev)):
test_proba_proba =torch.softmax(torch.Tensor(self.test_F_prev[i]),dim=-1).numpy()
self.test_auc.append(tabular_metrics.auc_metric(y,test_proba_proba))
# Reduce
# import ipdb
# ipdb.set_trace()
proba =torch.softmax(all_proba,dim=-1).numpy()
# import ipdb
# ipdb.set_trace()
return proba, self.boost_residuals, self.boost_loss, self.train_auc, self.test_auc, self.test_F_prev, self.test_boost_loss, self.test_boost_residuals
def predict_log_proba(self, X):
log_proba = np.log(self.predict_proba(X))
return log_proba