-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
825 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
import xobjects as xo | ||
import xdeps as xd | ||
|
||
|
||
def my_function(x): | ||
return [(x[0]-0.0001)**2, (x[1]-0.0003)**2, (x[2]+0.0005)**2, 3.0] | ||
|
||
x0 = [0., 0., 0.] | ||
|
||
opt = xd.Optimize.from_callable(my_function, x0=x0, steps=[1e-6, 1e-6, 1e-6, 1e-6], | ||
tar=[0., 0., 0., 3.], tols=[1e-12, 1e-12, 1e-12, 1e-12]) | ||
opt.solve() | ||
|
||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import xobjects as xo | ||
import xdeps as xd | ||
import numpy as np | ||
|
||
|
||
def my_function(x): | ||
return x | ||
|
||
x0 = [0., 0., 0.] | ||
|
||
opt = xd.Optimize.from_callable(my_function, x0=x0, steps=[1e-6, 1e-6, 1e-6], | ||
tar=[0., 0., 0.], tols=[1e-12, 1e-12, 1e-12], | ||
limits=[[-1, 2], [-1, 4], [-2, 2]]) | ||
opt.solve() | ||
|
||
mf = opt.get_merit_function() | ||
jmf = mf.get_jacobian([0.5, 2 , -1]) | ||
xo.assert_allclose(jmf, [[1, 0, 0], [0, 1, 0], [0, 0, 1]], atol=1e-6, rtol=0) | ||
|
||
# Check scalar function | ||
scalar_mf = opt.get_merit_function(return_scalar=True) | ||
xo.assert_allclose(scalar_mf([0.5, 2, -1]), (mf([0.5, 2, -1])**2).sum(), atol=1e-10, rtol=0) | ||
# Jacobian with finite differences | ||
jmf_scalare_ref = np.zeros(3) | ||
for ii in range(3): | ||
dx = 1e-10 | ||
x1 = np.array([0.5, 2, -1]) | ||
x1[ii] += dx | ||
jmf_scalare_ref[ii] = (scalar_mf(x1) - scalar_mf([0.5, 2, -1]))/dx | ||
xo.assert_allclose(jmf_scalare_ref, scalar_mf.get_jacobian([0.5, 2, -1]), atol=1e-6, rtol=0) | ||
|
||
# Check rescaling | ||
scaled_mf = opt.get_merit_function(rescale_x=(0, 1)) | ||
x = [0, 1, 0.5] | ||
xo.assert_allclose(scaled_mf(x), [-1, 4, 0], atol=1e-10, rtol=0) | ||
|
||
# Compute jacobian of rescaled merit function using finite differences | ||
x0 = [0.1, 0.2, 0.3] | ||
jsmf_ref = np.zeros((3, 3)) | ||
for ii in range(3): | ||
dx = 1e-6 | ||
x1 = np.array(x0) | ||
x1[ii] += dx | ||
jsmf_ref[:, ii] = (scaled_mf(x1) - scaled_mf(x0))/dx | ||
|
||
jsmf = scaled_mf.get_jacobian(x0) | ||
xo.assert_allclose(jsmf, jsmf_ref, atol=1e-6, rtol=0) | ||
|
||
scalar_scaled_smf = opt.get_merit_function(rescale_x=(0, 1), return_scalar=True) | ||
xo.assert_allclose(scalar_scaled_smf(x), (scaled_mf(x)**2).sum(), atol=1e-10, rtol=0) | ||
|
||
jscarlar_scaled_smf_ref = np.zeros(3) | ||
for ii in range(3): | ||
dx = 1e-10 | ||
x1 = np.array(x0) | ||
x1[ii] += dx | ||
jscarlar_scaled_smf_ref[ii] = (scalar_scaled_smf(x1) - scalar_scaled_smf(x0))/dx | ||
|
||
xo.assert_allclose(jscarlar_scaled_smf_ref, scalar_scaled_smf.get_jacobian(x0), atol=1e-6, rtol=0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
import xobjects as xo | ||
import xdeps as xd | ||
import numpy as np | ||
|
||
def my_function(x): | ||
return [(x[0]-0.0001)**2, (x[1]-0.0003)**2, (x[2]+0.0005)**2, 3.0] | ||
|
||
def scalar_func(x): | ||
return np.sum(np.array(my_function(x))**2) | ||
|
||
x0 = [0., 0., 0.] | ||
limits = [[-1, 1], [-1, 1], [-1, 1]] | ||
targets = [0., 0., 0., 3.] | ||
steps = [1e-6, 1e-6, 1e-6, 1e-6] | ||
tols = [1e-12, 1e-12, 1e-12, 1e-12] | ||
|
||
opt = xd.Optimize.from_callable(my_function, x0=x0, steps=steps, tar=targets, tols=tols, limits=limits) | ||
opt.run_bfgs() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
opt.reload(0) | ||
opt.run_l_bfgs_b() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
opt.reload(0) | ||
opt.run_ls_trf() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
opt.reload(0) | ||
opt.run_ls_dogbox() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
assert 'bfgs' in opt.log()['tag'] | ||
assert 'l-bfgs-b' in opt.log()['tag'] | ||
assert 'trf' in opt.log()['tag'] | ||
assert 'dogbox' in opt.log()['tag'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
import numpy as np | ||
import xobjects as xo | ||
import xdeps as xd | ||
|
||
|
||
def test_mirit_function_view(): | ||
|
||
def my_function(x): | ||
return x | ||
|
||
x0 = [0., 0., 0.] | ||
|
||
opt = xd.Optimize.from_callable(my_function, x0=x0, steps=[1e-6, 1e-6, 1e-6], | ||
tar=[0., 0., 0.], tols=[1e-12, 1e-12, 1e-12], | ||
limits=[[-1, 2], [-1, 4], [-2, 2]]) | ||
opt.solve() | ||
|
||
mf = opt.get_merit_function() | ||
jmf = mf.get_jacobian([0.5, 2, -1]) | ||
xo.assert_allclose(jmf, [[1, 0, 0], [0, 1, 0], [ | ||
0, 0, 1]], atol=1e-6, rtol=0) | ||
|
||
# Check scalar function | ||
scalar_mf = opt.get_merit_function(return_scalar=True) | ||
xo.assert_allclose(scalar_mf([0.5, 2, -1]), | ||
(mf([0.5, 2, -1])**2).sum(), atol=1e-10, rtol=0) | ||
# Jacobian with finite differences | ||
jmf_scalare_ref = np.zeros(3) | ||
for ii in range(3): | ||
dx = 1e-10 | ||
x1 = np.array([0.5, 2, -1]) | ||
x1[ii] += dx | ||
jmf_scalare_ref[ii] = (scalar_mf(x1) - scalar_mf([0.5, 2, -1]))/dx | ||
xo.assert_allclose(jmf_scalare_ref, scalar_mf.get_jacobian( | ||
[0.5, 2, -1]), atol=1e-6, rtol=0) | ||
|
||
# Check rescaling | ||
scaled_mf = opt.get_merit_function(rescale_x=(0, 1)) | ||
x = [0, 1, 0.5] | ||
xo.assert_allclose(scaled_mf(x), [-1, 4, 0], atol=1e-10, rtol=0) | ||
|
||
# Compute jacobian of rescaled merit function using finite differences | ||
x0 = [0.1, 0.2, 0.3] | ||
jsmf_ref = np.zeros((3, 3)) | ||
for ii in range(3): | ||
dx = 1e-6 | ||
x1 = np.array(x0) | ||
x1[ii] += dx | ||
jsmf_ref[:, ii] = (scaled_mf(x1) - scaled_mf(x0))/dx | ||
|
||
jsmf = scaled_mf.get_jacobian(x0) | ||
xo.assert_allclose(jsmf, jsmf_ref, atol=1e-6, rtol=0) | ||
|
||
scalar_scaled_smf = opt.get_merit_function( | ||
rescale_x=(0, 1), return_scalar=True) | ||
xo.assert_allclose(scalar_scaled_smf( | ||
x), (scaled_mf(x)**2).sum(), atol=1e-10, rtol=0) | ||
|
||
jscarlar_scaled_smf_ref = np.zeros(3) | ||
for ii in range(3): | ||
dx = 1e-10 | ||
x1 = np.array(x0) | ||
x1[ii] += dx | ||
jscarlar_scaled_smf_ref[ii] = ( | ||
scalar_scaled_smf(x1) - scalar_scaled_smf(x0))/dx | ||
|
||
xo.assert_allclose(jscarlar_scaled_smf_ref, | ||
scalar_scaled_smf.get_jacobian(x0), atol=1e-6, rtol=0) | ||
|
||
def test_optimize_basics(): | ||
|
||
def my_function(x): | ||
return [(x[0]-0.0001)**2, (x[1]-0.0003)**2, (x[2]+0.0005)**2, 3.0] | ||
|
||
x0 = [0., 0., 0.] | ||
|
||
opt = xd.Optimize.from_callable(my_function, x0=x0, steps=[1e-6, 1e-6, 1e-6, 1e-6], | ||
tar=[0., 0., 0., 3.], tols=[1e-12, 1e-12, 1e-12, 1e-12]) | ||
opt.solve() | ||
|
||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
def test_optimize_scipy_algorithms(): | ||
|
||
def my_function(x): | ||
return [(x[0]-0.0001)**2, (x[1]-0.0003)**2, (x[2]+0.0005)**2, 3.0] | ||
|
||
x0 = [0., 0., 0.] | ||
limits = [[-1, 1], [-1, 1], [-1, 1]] | ||
targets = [0., 0., 0., 3.] | ||
steps = [1e-6, 1e-6, 1e-6, 1e-6] | ||
tols = [1e-12, 1e-12, 1e-12, 1e-12] | ||
|
||
opt = xd.Optimize.from_callable(my_function, x0=x0, steps=steps, tar=targets, tols=tols, limits=limits) | ||
opt.run_bfgs() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
opt.reload(0) | ||
opt.run_l_bfgs_b() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
opt.reload(0) | ||
opt.run_ls_trf() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
opt.reload(0) | ||
opt.run_ls_dogbox() | ||
xo.assert_allclose(opt.get_merit_function().get_x(), [0.0001, 0.0003, -0.0005], atol=1e-6, rtol=0) | ||
|
||
assert 'bfgs' in opt.log()['tag'] | ||
assert 'l-bfgs-b' in opt.log()['tag'] | ||
assert 'trf' in opt.log()['tag'] | ||
assert 'dogbox' in opt.log()['tag'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.