-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
341 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
% Neural network training code | ||
% Author: Xiujiao Gao | ||
% Parameters | ||
|
||
t1 = cputime; | ||
% get weight matrix | ||
W1 = load('W1.txt'); | ||
W2 = load('W2.txt'); | ||
|
||
% Validation | ||
% X, feature matrix | ||
X = load(strcat('train0.txt')); | ||
[rows,columns] = size(X); | ||
% get train data , the left will be used as validation data | ||
X(1:ceil(rows*0.95),:)=[]; | ||
[rows,columns] = size(X); | ||
xones = ones(rows,1); | ||
X = [xones X]; | ||
% T, lable for each x feature,is 1 of 10 vector | ||
T = zeros(rows,10); | ||
T(:,1) = 1; | ||
for i=1:9 | ||
x = load(strcat('train',num2str(i),'.txt')); | ||
[rows,columns] = size(x); | ||
% get training data | ||
x(1:ceil(rows*0.95),:)=[]; | ||
[rows,columns] = size(x); | ||
xones = ones(rows,1); | ||
X = [X; xones x]; | ||
t = zeros(rows,10); | ||
t(:,i+1) = 1; | ||
T = [T;t]; | ||
end | ||
% Get Y | ||
A = X*W1; | ||
[Arows,Acolumns] = size(A); | ||
Z = zeros(Arows,Acolumns); | ||
for i = 1:Arows | ||
for j = 1:Acolumns | ||
Z(i,j) = tanh(A(i,j)); | ||
end | ||
end | ||
z = ones(Arows,1)*1.0; | ||
Z = [z Z]; | ||
R = Z*W2; | ||
% compute Y | ||
Sig = exp(R); | ||
[Sigrows,Sigcolumns] = size(Sig); | ||
rowsum = sum(Sig,2); | ||
temp = zeros(Sigrows,Sigcolumns); | ||
for i = 1:Sigcolumns | ||
temp(:,i) = rowsum; | ||
end | ||
Y = Sig./temp; | ||
% get max value from Y for each row and the corresponding column number | ||
[y,n] = max(Y'); | ||
Y_Lable = zeros(Sigrows,Sigcolumns); | ||
for i= 1:Sigrows | ||
Y_Lable(i,n(i)) = 1; | ||
end | ||
% get error rate | ||
E = xor(Y_Lable,T); | ||
validerr = (sum(sum(E))/2)/Sigrows | ||
|
||
% Test part | ||
% X, feature matrix | ||
X = load(strcat('test0.txt')); | ||
[Xrows,Xcolumns] = size(X); | ||
xones = ones(Xrows,1); | ||
X = [xones X]; | ||
% T, lable for each x feature,is 1 of 10 vector | ||
T = zeros(Xrows,10); | ||
T(:,1) = 1; | ||
for i=1:9 | ||
x = load(strcat('test',num2str(i),'.txt')); | ||
[xrows,xcolumns] = size(x); | ||
xones = ones(xrows,1); | ||
X = [X; xones x]; | ||
t = zeros(xrows,10); | ||
t(:,i+1) = 1; | ||
T = [T;t]; | ||
end | ||
|
||
% Get Y | ||
A = X*W1; | ||
[Arows,Acolumns] = size(A); | ||
Z = zeros(Arows,Acolumns); | ||
for i = 1:Arows | ||
for j = 1:Acolumns | ||
Z(i,j) = tanh(A(i,j)); | ||
end | ||
end | ||
z = ones(Arows,1)*1.0; | ||
Z = [z Z]; | ||
R = Z*W2; | ||
% compute Y | ||
Sig = exp(R); | ||
[Sigrows,Sigcolumns] = size(Sig); | ||
rowsum = sum(Sig,2); | ||
temp = zeros(Sigrows,Sigcolumns); | ||
for i = 1:Sigcolumns | ||
temp(:,i) = rowsum; | ||
end | ||
Y = Sig./temp; | ||
% get max value from Y for each row and the corresponding column number | ||
[y,n] = max(Y'); | ||
Y_Lable = zeros(Sigrows,Sigcolumns); | ||
for i= 1:Sigrows | ||
Y_Lable(i,n(i)) = 1; | ||
end | ||
% get error rate | ||
E = xor(Y_Lable,T); | ||
testerr = (sum(sum(E))/2)/Sigrows | ||
|
||
fid = fopen('class_nn.txt','W'); | ||
for i=1:Sigrows | ||
for j =1:Sigcolumns | ||
fprintf(fid,'%d \t',Y_Lable(i,j)); | ||
end | ||
fprintf(fid,'\n'); | ||
end | ||
|
||
fclose(fid); | ||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
% Neural network training code | ||
% Author: Xiujiao Gao | ||
% Parameters | ||
|
||
t1 = cputime; | ||
% number of hidden units | ||
M = 30; | ||
learnrate1 = 0.0005; | ||
learnrate2 = 0.00005; | ||
% learnrate1 = rand(513,M); | ||
% learnrate2 = rand(M+1,10); | ||
|
||
% Error Rate Limit, if big than this, continue | ||
err_limit = 0.001; | ||
% Thresh Limit, if err change bigger than it , continues | ||
thresh_limit = 0.001; | ||
% iter num | ||
N = 0; | ||
% iter limit,since I use "or" opertion for while, when iter numer is more | ||
% than N_limit, but the error change a lot, it will keep iterating, this | ||
% N_limit will work when the error is already acceptable | ||
N_limit = 600; | ||
% W1 and W2 first initialize it as ones, then update it during train | ||
% W1 = ones(513,M); | ||
% W2 = ones(M+1,10); | ||
% W1 and W2 initialize it use random numbers between 0 and 1 | ||
W1 = rand(513,M)*2 - 1; | ||
W2 = rand(M+1,10)*2 -1; | ||
% W1 = rand(513,M); | ||
% W2 = rand(M+1,10); | ||
|
||
fid=fopen('trainout_nn.txt','w'); | ||
fprintf(fid,'initialize W1 = \r\n'); | ||
for i=1:513 | ||
for j =1:M | ||
fprintf(fid,'%6.6f \t',W1(i,j)); | ||
end | ||
fprintf(fid,'\n'); | ||
end | ||
fprintf(fid,'initialize W2 = \r\n'); | ||
for i=1:M | ||
for j =1:10 | ||
fprintf(fid,'%6.6f \t',W2(i,j)); | ||
end | ||
fprintf(fid,'\n'); | ||
end | ||
|
||
% X, feature matrix | ||
X = load(strcat('train0.txt')); | ||
[Xrows,Xcolumns] = size(X); | ||
% get train data , the left will be used as validation data | ||
X(ceil(Xrows*0.95)+1:Xrows,:)=[]; | ||
[Xrows,Xcolumns] = size(X); | ||
xones = ones(Xrows,1); | ||
X = [xones X]; | ||
% T, lable for each x feature,is 1 of 10 vector | ||
T = zeros(Xrows,10); | ||
T(:,1) = 1; | ||
for i=1:9 | ||
x = load(strcat('train',num2str(i),'.txt')); | ||
[xrows,xcolumns] = size(x); | ||
% get training data | ||
x(ceil(xrows*0.95)+1:xrows,:)=[]; | ||
[xrows,xcolumns] = size(x); | ||
xones = ones(xrows,1); | ||
X = [X; xones x]; | ||
t = zeros(xrows,10); | ||
t(:,i+1) = 1; | ||
T = [T;t]; | ||
end | ||
|
||
A = X*W1; | ||
[Arows,Acolumns] = size(A); | ||
Z = zeros(Arows,Acolumns); | ||
for i = 1:Arows | ||
for j = 1:Acolumns | ||
Z(i,j) = tanh(A(i,j)); | ||
end | ||
end | ||
|
||
z = ones(Arows,1)*1.0; | ||
Z = [z Z]; | ||
R = Z*W2; | ||
% compute new Y | ||
Sig = exp(R); | ||
[Sigrows,Sigcolumns] = size(Sig); | ||
% Get new Y | ||
rowsum = sum(Sig,2); | ||
temp = zeros(Sigrows,Sigcolumns); | ||
for i = 1:Sigcolumns | ||
temp(:,i) = rowsum; | ||
end | ||
Y = Sig./temp; | ||
% get max value from Y for each row and the corresponding column number | ||
[y,n] = max(Y'); | ||
Y_Lable = zeros(Sigrows,Sigcolumns); | ||
for i= 1:Sigrows | ||
Y_Lable(i,n(i)) = 1; | ||
end | ||
% get error rate | ||
E = xor(Y_Lable,T); | ||
err = (sum(sum(E))/2)/Sigrows; | ||
|
||
% update W | ||
thresh = 1; | ||
while(thresh > thresh_limit | err > err_limit | N < N_limit) % threshhold of updating | ||
gradientW1 = zeros(513,M); | ||
gradientW2 = zeros(M+1,10); | ||
% Y_T = T.*(ones(size(Y))-Y); | ||
Y_T = Y-T; | ||
|
||
gradientW2 = Z'*Y_T; | ||
W2 = W2 - learnrate2.*gradientW2; | ||
W2_copy = W2; | ||
W2_copy(1,:) = []; | ||
Z_copy = Z; | ||
Z_copy(:,1) = []; | ||
Q = Y_T*W2_copy'; | ||
B = Q.*(ones(size(Z_copy))-Z_copy.^2); | ||
gradientW1 = X'*B; | ||
% get new W1 and W2 | ||
|
||
W1 = W1 - learnrate1.*gradientW1; | ||
% Get new Y | ||
A = X*W1; | ||
[Arows,Acolumns] = size(A); | ||
Z = zeros(Arows,Acolumns); | ||
for i = 1:Arows | ||
for j = 1:Acolumns | ||
Z(i,j) = tanh(A(i,j)); | ||
end | ||
end | ||
|
||
z = ones(Arows,1)*1.0; | ||
|
||
Z = [z Z]; | ||
R = Z*W2; | ||
% compute new Y | ||
Sig = exp(R); | ||
% Get new Y | ||
rowsum = sum(Sig,2); | ||
temp = zeros(size(Sig)); | ||
for i = 1:Sigcolumns | ||
temp(:,i) = rowsum; | ||
end | ||
Y = Sig./temp; | ||
|
||
% get max value from Y for each row and the corresponding column number | ||
[y,n] = max(Y'); | ||
Y_Label = zeros(Sigrows,Sigcolumns); | ||
for i= 1:Sigrows | ||
Y_Label(i,n(i)) = 1; | ||
end | ||
% get error rate | ||
E = xor(Y_Label,T); | ||
err_old = err; | ||
err = (sum(sum(E))/2)/Sigrows | ||
thresh = err_old - err; | ||
if (thresh < 0) | ||
fprintf('Error rate increase from %6.6f to %6.6f, the learning rate maybe too large',err_old,err); | ||
end | ||
N = N+1 | ||
end | ||
t2 = cputime; | ||
|
||
fprintf(fid,'time = % 6.6f \r\n',t2-t1); | ||
fprintf(fid,'err_limit = % 6.6f \r\n',err_limit); | ||
fprintf(fid,'err_old = % 6.6f \r\n',err_old); | ||
fprintf(fid,'err = % 6.6f \r\n',err); | ||
fprintf(fid,'thresh_limit = % 6.6f \r\n',thresh_limit); | ||
fprintf(fid,'thresh = % 6.6f \r\n',thresh); | ||
fprintf(fid,'learnrate1 = % 6.6f \r\n',learnrate1); | ||
fprintf(fid,'learnrate2 = % 6.6f \r\n',learnrate2); | ||
fprintf(fid,'iter times = % d \r\n',N); | ||
fidw1=fopen('W1.txt','w'); | ||
fidw2=fopen('W2.txt','w'); | ||
fprintf(fid,'final W1 = \r\n'); | ||
for i=1:513 | ||
for j =1:M | ||
fprintf(fid,'%6.6f \t',W1(i,j)); | ||
fprintf(fidw1,'%6.6f \t',W1(i,j)); | ||
end | ||
fprintf(fid,'\n'); | ||
fprintf(fidw1,'\n'); | ||
end | ||
fprintf(fid,'final W2 = \r\n'); | ||
for i=1:M+1 | ||
for j =1:10 | ||
fprintf(fid,'%6.6f \t',W2(i,j)); | ||
fprintf(fidw2,'%6.6f \t',W2(i,j)); | ||
end | ||
fprintf(fid,'\n'); | ||
fprintf(fidw2,'\n'); | ||
end | ||
|
||
|
||
for i=1:Sigrows | ||
for j =1:Sigcolumns | ||
fprintf(fid,'%d \t',Y_Label(i,j)); | ||
end | ||
fprintf(fid,'\n'); | ||
end | ||
|
||
fclose(fid); | ||
fclose(fidw1); | ||
fclose(fidw2); | ||
|
||
|
||
|
||
|
||
|
||
|