-
Notifications
You must be signed in to change notification settings - Fork 1
data science portfolio basically containing many different micro and macro projeects which I implemented while learning data science from various sources and books employing machine learning, deep learning and data science techniques
wajeehulhassanvii/data_science_portfolio
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
. ├── analytics ├── aws ├── books ├── data manipulation │ └── micro │ ├── DATAFRAME AS A DICTIONARY.ipynb │ ├── Handlling Missing Data.ipynb │ ├── Hierarchical Indexing.ipynb │ ├── INDEXERS LOC ILOC AND IX.ipynb │ ├── Series and Dictionary.ipynb │ ├── testing.ipynb │ └── Ufuncs Index Preservation, axis.ipynb ├── deep learning │ ├── dlaz │ │ └── Artificial Neural Network - Bank Churn Data.ipynb │ ├── handon-dl │ └── nano-dl │ ├── Sentiment_Classification_Projects.ipynb │ └── Sentiment_Classification_Solutions.ipynb ├── finance │ ├── Calculating Beyda.ipynb │ ├── Multivariate Regression.ipynb │ ├── Pandas rolling and expanding.ipynb │ ├── time resampling.ipynb │ └── time shifting.ipynb ├── Google Colab ├── images ├── kaggle ├── machine learning ├── mapreduce ├── matplotlib │ └── micro │ ├── 1D and 2D Histograms, Binnings, and Density.ipynb │ ├── Customizing Plot Legends.ipynb │ ├── Density and Contour plots.ipynb │ ├── errorbars and continuous error.ipynb │ ├── iris dataset visualization.ipynb │ ├── Legend for Size of Points.ipynb │ └── matplotlib general.ipynb ├── micro_projects │ ├── 50 startups - multi linear regression ML.ipynb │ ├── Decision Tree Classification ML.ipynb │ ├── Decision Tree Regression ML.ipynb │ ├── deep_learning │ ├── Hierarchial Clustering - Mall csv ML.ipynb │ ├── Kernel SVM ML.ipynb │ ├── KNN for dataset Social Network Ads ML.ipynb │ ├── Logistic Regression - Social Network Ads ML.ipynb │ ├── Mall Customer Clusters - Kmeans ML.ipynb │ ├── Position Salary - Polynomial regression ML.ipynb │ ├── Position Salary Prediction - Random Forest ML.ipynb │ ├── Random Forest Classifier ML.ipynb │ ├── Salary Prediction ML.ipynb │ └── Support Vector Machine (Classifier) - Network Ads ML.ipynb ├── NLP │ ├── 16_nlp_with_rnns_and_attention - google colab.ipynb │ ├── 16_nlp_with_rnns_and_attention.ipynb │ ├── images │ │ └── nlp │ └── Shakespeare HOML _ local.ipynb ├── numpy ├── python ├── retail │ └── five-point summary .ipynb ├── scikit-learn ├── scipy └── spark 28 directories, 39 files
About
data science portfolio basically containing many different micro and macro projeects which I implemented while learning data science from various sources and books employing machine learning, deep learning and data science techniques
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published