Libtrixi is an interface library for using Trixi.jl from C/C++/Fortran.
Currently, libtrixi is only developed and tested for Linux. Furthermore, the following software packages need to be made available locally before installing libtrixi:
- Julia v1.8+
- C compiler with support for C11 or later (e.g., gcc or clang)
- Fortran compiler with support for Fortran 2018 or later (e.g., gfortran)
- CMake
- MPI (e.g., OpenMPI or MPICH)
- HDF5
- t8code v3.0.1
git clone [email protected]:trixi-framework/libtrixi.git
For building, cmake
and its typical workflow is used.
-
It is recommended to create an out-of-source build directory, e.g.
mkdir build cd build
-
Call cmake
cmake -DCMAKE_BUILD_TYPE=(Debug|Release) -DCMAKE_INSTALL_PREFIX=<install_directory> ..
cmake
should findMPI
andJulia
automatically. If not, the directories can be specified manually. Thecmake
clientsccmake
orcmake-gui
could be useful.- Specifying the directory
install_directory
for later installation is optional. - Optional specification of build type sets some default compiler options for optimized or debug code.
- Building with t8code support is optional. It requires to pass
-DT8CODE_ROOT=<t8code_install_directory>
.
- Specifying the directory
-
Call make
make
This will build and place
libtrixi.so
in the current directory along with its header and a Fortranmod
file. Your application will have to include and link against these.Examples can be found in the
examples
subdirectory. -
Install (optional)
make install
This will install all provided files to the specified location.
Besides the library being installed, you need to configure Julia for use with libtrixi. For
this, create a directory where all necessary files will be placed, e.g., libtrixi-julia
.
Then, you can use the utils/libtrixi-init-julia
tool (also
available at <install_directory>/bin
) to do the rest for you. A minimal example would be:
mkdir libtrixi-julia
cd libtrixi-julia
<install_directory>/bin/libtrixi-init-julia \
--t8code-library <t8code_install_directory>/lib/libt8.so
<install_directory>
Use libtrixi-init-julia -h
to get help.
In your code, pass the path to the libtrixi-julia
directory to trixi_initialize
,
see the code of the examples. If you did not modify the default value for the Julia depot
when calling libtrixi-init-julia
, libtrixi will find it automatically.
Otherwise, when running a program that uses libtrixi, you need to make sure to set the
JULIA_DEPOT_PATH
environment variable to point to the <julia-depot>
folder reported.
If you intend to use additional Julia packages, besides Trixi
and OrdinaryDiffEq
, you
will have to add them to your Julia project (i.e. use
julia --project=<libtrixi-julia_directory>
and import Pkg; Pkg.add(<package>)
).
Go to some directory from where you want to run a Trixi simulation.
LIBTRIXI_DEBUG=all \
<install_directory>/bin/trixi_controller_simple_c \
<libtrixi-julia_directory> \
<install_directory>/share/libtrixi/LibTrixi.jl/examples/libelixir_tree1d_advection_basic.jl
which should give you an output similar to this:
████████╗██████╗ ██╗██╗ ██╗██╗
╚══██╔══╝██╔══██╗██║╚██╗██╔╝██║
██║ ██████╔╝██║ ╚███╔╝ ██║
██║ ██╔══██╗██║ ██╔██╗ ██║
██║ ██║ ██║██║██╔╝ ██╗██║
╚═╝ ╚═╝ ╚═╝╚═╝╚═╝ ╚═╝╚═╝
┌──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ SemidiscretizationHyperbolic │
│ ════════════════════════════ │
│ #spatial dimensions: ………………………… 1 │
│ mesh: ………………………………………………………………… TreeMesh{1, Trixi.SerialTree{1}} with length 31 │
│ equations: …………………………………………………… LinearScalarAdvectionEquation1D │
│ initial condition: ……………………………… initial_condition_convergence_test │
│ boundary conditions: ………………………… Trixi.BoundaryConditionPeriodic │
│ source terms: …………………………………………… nothing │
│ solver: …………………………………………………………… DG │
│ total #DOFs: ……………………………………………… 64 │
└──────────────────────────────────────────────────────────────────────────────────────────────────┘
<snip>
┌──────────────────────────────────────────────────────────────────────────────────────────────────┐
│ Environment information │
│ ═══════════════════════ │
│ #threads: ……………………………………………………… 1 │
└──────────────────────────────────────────────────────────────────────────────────────────────────┘
────────────────────────────────────────────────────────────────────────────────────────────────────
Simulation running 'LinearScalarAdvectionEquation1D' with DGSEM(polydeg=3)
────────────────────────────────────────────────────────────────────────────────────────────────────
#timesteps: 0 run time: 7.20000000e-07 s
Δt: 1.00000000e+00 └── GC time: 0.00000000e+00 s (0.000%)
sim. time: 0.00000000e+00 time/DOF/rhs!: NaN s
PID: Inf s
#DOF: 64 alloc'd memory: 143.411 MiB
#elements: 16
Variable: scalar
L2 error: 2.78684204e-06
Linf error: 6.06474411e-06
∑∂S/∂U ⋅ Uₜ : -3.46944695e-18
────────────────────────────────────────────────────────────────────────────────────────────────────
Current time step length: 0.050000
────────────────────────────────────────────────────────────────────────────────────────────────────
Simulation running 'LinearScalarAdvectionEquation1D' with DGSEM(polydeg=3)
────────────────────────────────────────────────────────────────────────────────────────────────────
#timesteps: 20 run time: 1.11329306e+00 s
Δt: 5.00000000e-02 └── GC time: 5.11113150e-02 s (0.046%)
sim. time: 1.00000000e+00 time/DOF/rhs!: 2.58861826e-08 s
PID: 1.57108461e-04 s
#DOF: 64 alloc'd memory: 116.126 MiB
#elements: 16
Variable: scalar
L2 error: 6.03882964e-06
Linf error: 3.21788773e-05
∑∂S/∂U ⋅ Uₜ : -2.16706314e-09
────────────────────────────────────────────────────────────────────────────────────────────────────
────────────────────────────────────────────────────────────────────────────────────
Trixi.jl Time Allocations
─────────────────────── ────────────────────────
Tot / % measured: 1.13s / 52.4% 57.4MiB / 21.9%
Section ncalls time %tot avg alloc %tot avg
────────────────────────────────────────────────────────────────────────────────────
I/O 3 495ms 83.5% 165ms 8.81MiB 70.0% 2.94MiB
~I/O~ 3 230ms 38.8% 76.7ms 1.09MiB 8.7% 372KiB
get element variables 2 160ms 27.0% 80.2ms 1.90MiB 15.1% 975KiB
save solution 2 105ms 17.7% 52.5ms 5.81MiB 46.2% 2.91MiB
save mesh 2 250ns 0.0% 125ns 0.00B 0.0% 0.00B
analyze solution 2 98.1ms 16.5% 49.0ms 3.76MiB 29.9% 1.88MiB
rhs! 101 149μs 0.0% 1.47μs 6.61KiB 0.1% 67.0B
~rhs!~ 101 88.1μs 0.0% 872ns 6.61KiB 0.1% 67.0B
volume integral 101 21.4μs 0.0% 212ns 0.00B 0.0% 0.00B
interface flux 101 10.2μs 0.0% 101ns 0.00B 0.0% 0.00B
prolong2interfaces 101 6.71μs 0.0% 66.4ns 0.00B 0.0% 0.00B
surface integral 101 5.52μs 0.0% 54.7ns 0.00B 0.0% 0.00B
Jacobian 101 4.86μs 0.0% 48.1ns 0.00B 0.0% 0.00B
prolong2boundaries 101 3.79μs 0.0% 37.5ns 0.00B 0.0% 0.00B
reset ∂u/∂t 101 3.58μs 0.0% 35.5ns 0.00B 0.0% 0.00B
boundary flux 101 2.37μs 0.0% 23.5ns 0.00B 0.0% 0.00B
source terms 101 2.25μs 0.0% 22.3ns 0.00B 0.0% 0.00B
calculate dt 21 2.18μs 0.0% 104ns 0.00B 0.0% 0.00B
────────────────────────────────────────────────────────────────────────────────────
If you change the executable name from trixi_controller_simple_c
to
trixi_controller_simple_f
, you will get a near identical output. The corresponding source
files can be found in the examples/
folder. The examples demonstrate different
aspects on how to use the C and Fortran APIs of libtrixi:
trixi_controller_simple.(c|f90)
: basic usagetrixi_controller_mpi.(c|f90)
: usage in the presence of MPItrixi_controller_data.(c|f90)
: simulation data accesstrixi_controller_t8code.(c|f90)
: interacting with t8code
If you just want to test the Julia part of libtrixi, i.e., LibTrixi.jl, you can also run
trixi_controller_simple.jl
from Julia.
JULIA_DEPOT_PATH=<julia-depot_directory> \
LIBTRIXI_DEBUG=all \
julia --project=<libtrixi-julia_directory>
<install_directory>/share/libtrixi/examples/trixi_controller_simple.jl
<install_directory>/share/libtrixi/LibTrixi.jl/examples/libelixir_tree1d_advection_basic.jl
Note: Most auxiliary output is hidden unless the environment variable LIBTRIXI_DEBUG
is
set to all
. Alternative values for the variable are c
or julia
to only show debug
statements from the C or Julia part of the library, respectively. All values are
case-sensitive and must be provided all lowercase.
To use libtrixi in your program, you need to specify -I$LIBTRIXI_PREFIX/include
for the
include directory with header and module files, -L$LIBTRIXI_PREFIX/lib
for the library
directory, and -ltrixi
for the library itself during your build process. Optionally, you
can additionally specify -Wl,-rpath,$LIBTRIXI_PREFIX/lib
such that the runtime loader
knows where to find libtrixi.so
. Here, $LIBTRIXI_PREFIX
is the install prefix you
specified during the CMake configure stage with -DCMAKE_INSTALL_PREFIX
(see above).
An example Makefile
is provided with
examples/MakefileExternal
, which can be invoked from inside
the examples/
directory as
make -f MakefileExternal LIBTRIXI_PREFIX=path/to/libtrixi/prefix
to build trixi_controller_simple_f
.
A CMake module for the discovery of an installed libtrixi library is provided with
cmake/FindLibTrixi.cmake
. Before calling
find_package(LibTrixi)
, the CMake variable LIBTRIXI_PREFIX
must be set to
<install_directory>
. An example CMakeLists.txt
can be found in
examples/external/CMakeLists.txt
.
To see the commands required to build an example program with this CMake project,
please refer to examples/external/build.sh
.
On Linux and FreeBSD systems (i.e., not on macOS or Windows), Julia may internally
use a faster implementation for thread-local storage (TLS), which is used whenever Julia
functions such task management, garbage collection etc. are used in a multithreaded
context, or when they are themselves multithreaded. To activate the fast TLS in your
program, you need to add the file $LIBTRIXI_PREFIX/lib/libtrixi_tls.o
to the list of files
that are linked with your main program. See MakefileExternal
for an example of how to do
this. If you skip this step, everything will work as usual, but some things might run
slightly slower.
There is experimental support for compiling the Julia sources in LibTrixi.jl to a shared library with a C interface. This is possible with the use of the Julia package PackageCompiler.jl.
To try this out, perform the following steps:
-
Initialize the project directory
libtrixi-julia
usinglibtrixi-init-julia
as described above. -
Build
using make
- Go to the
LibTrixi.jl/lib
directory in the repository root, make sure thatPROJECT_DIR
(defined inMakefile
) points to yourlibtrixi-julia
directory, and callmake
:cd LibTrixi.jl/lib make
- Go to the
examples
folder in the repository root and compiletrixi_controller_simple_c
:This will create acd examples make -f MakefileCompiled LIBTRIXI_PREFIX=$PWD/../LibTrixi.jl/lib/build
trixi_controller_simple_c
file.
using cmake
- Add
to your cmake call (see above)
-DUSE_PACKAGE_COMPILER=ON -DJULIA_PROJECT_PATH=<libtrixi-julia_directory>
- Go to the
-
From inside the
examples
folder you should be able to run the example (in parallel) with the following command:mpirun -n 2 trixi_controller_simple_c \ ../libtrixi-julia \ ../LibTrixi.jl/examples/libelixir_p4est2d_euler_sedov.jl
Optionally, you can set
LIBTRIXI_DEBUG=all
to get some debug output along the way.
Documentation for the current release can be found at https://trixi-framework.github.io/libtrixi, and for the current development version at https://trixi-framework.github.io/libtrixi/dev.
If you use libtrixi in your own research or write a paper using results obtained with the help of libtrixi, you can refer to libtrixi directly as
@misc{schlottkelakemper2023libtrixi,
title={{L}ibtrixi: {I}nterface library for using {T}rixi.jl from {C}/{C}++/{F}ortran},
author={Schlottke-Lakemper, Michael and Geihe, Benedict and Gassner, Gregor J},
year={2023},
month={09},
howpublished={\url{https://github.com/trixi-framework/libtrixi}},
doi={10.5281/zenodo.8321803}
}
Since libtrixi is based on Trixi.jl, you should also cite Trixi.jl in this case.
Libtrixi was initiated by Benedict Geihe (University of Cologne, Germany) and Michael Schlottke-Lakemper (RWTH Aachen University/High-Performance Computing Center Stuttgart (HLRS), Germany), who are also its principal maintainers.
Libtrixi is licensed under the MIT license (see LICENSE.md).
This project has benefited from funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the research unit FOR 5409 "Structure-Preserving Numerical Methods for Bulk- and Interface Coupling of Heterogeneous Models (SNuBIC)" (project number 463312734).
This project has benefited from funding from the German Federal Ministry of Education and Research through the project grant "Adaptive earth system modeling with significantly reduced computation time for exascale supercomputers (ADAPTEX)" (funding id: 16ME0668K).