-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit e9b0b67
Showing
34 changed files
with
6,280 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
notebooks/.ipynb_checkpoints | ||
.idea/ | ||
modules/__pycache__/ | ||
*/*/*.pyc | ||
*/*/.ipynb_checkpoints | ||
*/*/__pycache__/ | ||
notebooks/ | ||
misc_stuff/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
name: pytorch-CycleGAN-and-pix2pix | ||
channels: | ||
- anaconda | ||
- conda-forge | ||
- defaults | ||
dependencies: | ||
- h5py=2.8.0=py35h989c5e5_3 | ||
- six=1.11.0=py35_1 | ||
- ca-certificates=2018.11.29=ha4d7672_0 | ||
- certifi=2018.8.24=py35_1001 | ||
- cloudpickle=0.6.1=py_0 | ||
- cycler=0.10.0=py_1 | ||
- dask-core=1.0.0=py_0 | ||
- decorator=4.3.0=py_0 | ||
- matplotlib=2.2.3=py35h8e2386c_0 | ||
- networkx=2.2=py_1 | ||
- openssl=1.0.2p=h470a237_1 | ||
- pyqt=5.6.0=py35h8210e8a_7 | ||
- python-dateutil=2.7.5=py_0 | ||
- pywavelets=1.0.1=py35h7eb728f_0 | ||
- scikit-image=0.14.0=py35hfc679d8_1 | ||
- sip=4.18.1=py35hfc679d8_0 | ||
- toolz=0.9.0=py_1 | ||
- tornado=5.1.1=py35h470a237_0 | ||
- blas=1.0=mkl | ||
- cffi=1.11.5=py35he75722e_1 | ||
- cudatoolkit=9.0=h13b8566_0 | ||
- cudnn=7.1.2=cuda9.0_0 | ||
- dbus=1.13.2=h714fa37_1 | ||
- expat=2.2.6=he6710b0_0 | ||
- fontconfig=2.13.0=h9420a91_0 | ||
- freetype=2.9.1=h8a8886c_1 | ||
- glib=2.56.2=hd408876_0 | ||
- gst-plugins-base=1.14.0=hbbd80ab_1 | ||
- gstreamer=1.14.0=hb453b48_1 | ||
- hdf5=1.10.2=hba1933b_1 | ||
- icu=58.2=h9c2bf20_1 | ||
- imageio=2.4.1=py35_0 | ||
- intel-openmp=2019.1=144 | ||
- jpeg=9b=h024ee3a_2 | ||
- kiwisolver=1.0.1=py35hf484d3e_0 | ||
- libedit=3.1.20170329=h6b74fdf_2 | ||
- libffi=3.2.1=hd88cf55_4 | ||
- libgcc-ng=8.2.0=hdf63c60_1 | ||
- libgfortran-ng=7.3.0=hdf63c60_0 | ||
- libpng=1.6.35=hbc83047_0 | ||
- libstdcxx-ng=8.2.0=hdf63c60_1 | ||
- libtiff=4.0.9=he85c1e1_2 | ||
- libuuid=1.0.3=h1bed415_2 | ||
- libxcb=1.13=h1bed415_1 | ||
- libxml2=2.9.8=h26e45fe_1 | ||
- mkl=2018.0.3=1 | ||
- mkl_fft=1.0.6=py35h7dd41cf_0 | ||
- mkl_random=1.0.1=py35h4414c95_1 | ||
- nccl=1.3.5=cuda9.0_0 | ||
- ncurses=6.1=hf484d3e_0 | ||
- ninja=1.8.2=py35h6bb024c_1 | ||
- numpy=1.15.2=py35h1d66e8a_0 | ||
- numpy-base=1.15.2=py35h81de0dd_0 | ||
- olefile=0.46=py35_0 | ||
- pcre=8.42=h439df22_0 | ||
- pillow=5.2.0=py35heded4f4_0 | ||
- pip=10.0.1=py35_0 | ||
- pycparser=2.19=py35_0 | ||
- pyparsing=2.2.1=py35_0 | ||
- python=3.5.5=hc3d631a_4 | ||
- pytorch=0.4.1=py35ha74772b_0 | ||
- pytz=2018.5=py35_0 | ||
- qt=5.6.3=h39df351_1 | ||
- readline=7.0=h7b6447c_5 | ||
- scipy=1.1.0=py35hfa4b5c9_1 | ||
- setuptools=40.2.0=py35_0 | ||
- sqlite=3.25.3=h7b6447c_0 | ||
- tk=8.6.8=hbc83047_0 | ||
- wheel=0.31.1=py35_0 | ||
- xz=5.2.4=h14c3975_4 | ||
- zlib=1.2.11=ha838bed_2 | ||
- pip: | ||
- backcall==0.1.0 | ||
- bleach==3.0.2 | ||
- chardet==3.0.4 | ||
- dask==1.0.0 | ||
- defusedxml==0.5.0 | ||
- dominate==2.3.1 | ||
- entrypoints==0.2.3 | ||
- idna==2.7 | ||
- ipykernel==5.1.0 | ||
- ipython==7.2.0 | ||
- ipython-genutils==0.2.0 | ||
- ipywidgets==7.4.2 | ||
- jedi==0.13.1 | ||
- jinja2==2.10 | ||
- jsonschema==2.6.0 | ||
- jupyter==1.0.0 | ||
- jupyter-client==5.2.3 | ||
- jupyter-console==6.0.0 | ||
- jupyter-core==4.4.0 | ||
- markupsafe==1.1.0 | ||
- mistune==0.8.4 | ||
- nbconvert==5.4.0 | ||
- nbformat==4.4.0 | ||
- notebook==5.7.2 | ||
- pandocfilters==1.4.2 | ||
- parso==0.3.1 | ||
- pexpect==4.6.0 | ||
- pickleshare==0.7.5 | ||
- prometheus-client==0.4.2 | ||
- prompt-toolkit==2.0.7 | ||
- ptyprocess==0.6.0 | ||
- pygments==2.3.0 | ||
- pyzmq==17.1.2 | ||
- qtconsole==4.4.3 | ||
- requests==2.20.1 | ||
- send2trash==1.5.0 | ||
- terminado==0.8.1 | ||
- testpath==0.4.2 | ||
- torch==0.4.1 | ||
- torchfile==0.1.0 | ||
- torchvision==0.2.1 | ||
- tqdm==4.28.1 | ||
- traitlets==4.3.2 | ||
- urllib3==1.24.1 | ||
- visdom==0.1.7 | ||
- wcwidth==0.1.7 | ||
- webencodings==0.5.1 | ||
- widgetsnbextension==3.4.2 | ||
prefix: /home/asa224/anaconda3/envs/pytorch-CycleGAN-and-pix2pix | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
#!/usr/bin/env bash | ||
python train_mmgan_brats2018.py --grade=HGG --train_patient_idx=200 --test_pats=10 --batch_size=4 --dataset=BRATS2018 --n_epochs=60 --model_name=mmgan_hgg_zeros_cl --log_level=info --n_cpu=4 --c_learning=1 --z_type=zeros |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
#!/usr/bin/env bash | ||
python train_mmgan_brats2018.py --grade=LGG --train_patient_idx=70 --test_pats=5 --batch_size=4 --dataset=BRATS2018 --n_epochs=60 --model_name=mmgan_lgg_zeros_cl --log_level=info --n_cpu=8 --c_learning=1 --z_type=zeros |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
import glob | ||
import random | ||
import os | ||
import numpy as np | ||
|
||
from torch.utils.data import Dataset | ||
from PIL import Image | ||
import torchvision.transforms as transforms | ||
|
||
class ImageDataset(Dataset): | ||
def __init__(self, root, transforms_=None, mode='train'): | ||
self.transform = transforms.Compose(transforms_) | ||
|
||
self.files = sorted(glob.glob(os.path.join(root, mode) + '/*.*')) | ||
if mode == 'train': | ||
self.files.extend(sorted(glob.glob(os.path.join(root, 'test') + '/*.*'))) | ||
|
||
def __getitem__(self, index): | ||
|
||
img = Image.open(self.files[index % len(self.files)]) | ||
w, h = img.size | ||
img_A = img.crop((0, 0, w/2, h)) | ||
img_B = img.crop((w/2, 0, w, h)) | ||
|
||
if np.random.random() < 0.5: | ||
img_A = Image.fromarray(np.array(img_A)[:, ::-1, :], 'RGB') | ||
img_B = Image.fromarray(np.array(img_B)[:, ::-1, :], 'RGB') | ||
|
||
img_A = self.transform(img_A) | ||
img_B = self.transform(img_B) | ||
|
||
return {'A': img_A, 'B': img_B} | ||
|
||
def __len__(self): | ||
return len(self.files) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch | ||
import numpy as np | ||
import random | ||
np.random.seed(1337) | ||
torch.manual_seed(1337) | ||
random.seed(1337) | ||
torch.backends.cudnn.deterministic = True | ||
def weights_init_normal(m): | ||
classname = m.__class__.__name__ | ||
if classname.find('Conv') != -1: | ||
torch.nn.init.normal_(m.weight.data, 0.0, 0.02) | ||
elif classname.find('BatchNorm2d') != -1: | ||
torch.nn.init.normal_(m.weight.data, 1.0, 0.02) | ||
torch.nn.init.constant_(m.bias.data, 0.0) | ||
|
||
############################## | ||
# U-NET | ||
############################## | ||
|
||
class UNetDown(nn.Module): | ||
def __init__(self, in_size, out_size, normalize=True, dropout=0.0): | ||
super(UNetDown, self).__init__() | ||
layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)] | ||
if normalize: | ||
layers.append(nn.InstanceNorm2d(out_size)) | ||
layers.append(nn.LeakyReLU(0.2)) | ||
if dropout: | ||
layers.append(nn.Dropout(dropout)) | ||
self.model = nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
return self.model(x) | ||
|
||
class UNetUp(nn.Module): | ||
def __init__(self, in_size, out_size, dropout=0.0): | ||
super(UNetUp, self).__init__() | ||
layers = [ nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False), | ||
nn.InstanceNorm2d(out_size), | ||
nn.ReLU(inplace=True)] | ||
if dropout: | ||
layers.append(nn.Dropout(dropout)) | ||
|
||
self.model = nn.Sequential(*layers) | ||
|
||
def forward(self, x, skip_input): | ||
x = self.model(x) | ||
x = torch.cat((x, skip_input), 1) | ||
|
||
return x | ||
|
||
class GeneratorUNet(nn.Module): | ||
def __init__(self, in_channels=3, out_channels=3, with_tanh=False, with_relu=False): | ||
super(GeneratorUNet, self).__init__() | ||
|
||
# original dropout was 0.5 | ||
self.down1 = UNetDown(in_channels, 64, normalize=False) | ||
self.down2 = UNetDown(64, 128) | ||
self.down3 = UNetDown(128, 256) | ||
self.down4 = UNetDown(256, 512, dropout=0.2) | ||
self.down5 = UNetDown(512, 512, dropout=0.2) | ||
self.down6 = UNetDown(512, 512, dropout=0.2) | ||
self.down7 = UNetDown(512, 512, dropout=0.2) | ||
self.down8 = UNetDown(512, 512, normalize=False, dropout=0.2) | ||
|
||
self.up1 = UNetUp(512, 512, dropout=0.2) | ||
self.up2 = UNetUp(1024, 512, dropout=0.2) | ||
self.up3 = UNetUp(1024, 512, dropout=0.2) | ||
self.up4 = UNetUp(1024, 512, dropout=0.2) | ||
self.up5 = UNetUp(1024, 256) | ||
self.up6 = UNetUp(512, 128) | ||
self.up7 = UNetUp(256, 64) | ||
|
||
if with_tanh: | ||
|
||
self.final = nn.Sequential( | ||
nn.Upsample(scale_factor=2), | ||
nn.ZeroPad2d((1, 0, 1, 0)), | ||
nn.Conv2d(128, out_channels, 4, padding=1), | ||
nn.Tanh() | ||
) | ||
elif with_relu: | ||
# this is for ISLES2015 | ||
self.final = nn.Sequential( | ||
nn.Upsample(scale_factor=2), | ||
nn.ZeroPad2d((1, 0, 1, 0)), | ||
nn.Conv2d(128, out_channels, 4, padding=1), | ||
nn.ReLU() | ||
) | ||
|
||
else: | ||
self.final = nn.Sequential( | ||
nn.Upsample(scale_factor=2), | ||
nn.ZeroPad2d((1, 0, 1, 0)), | ||
nn.Conv2d(128, out_channels, 4, padding=1) | ||
) | ||
|
||
|
||
def forward(self, x): | ||
# U-Net generator with skip connections from encoder to decoder | ||
d1 = self.down1(x) | ||
d2 = self.down2(d1) | ||
d3 = self.down3(d2) | ||
d4 = self.down4(d3) | ||
d5 = self.down5(d4) | ||
d6 = self.down6(d5) | ||
d7 = self.down7(d6) | ||
d8 = self.down8(d7) | ||
u1 = self.up1(d8, d7) | ||
u2 = self.up2(u1, d6) | ||
u3 = self.up3(u2, d5) | ||
u4 = self.up4(u3, d4) | ||
u5 = self.up5(u4, d3) | ||
u6 = self.up6(u5, d2) | ||
u7 = self.up7(u6, d1) | ||
|
||
return self.final(u7) | ||
|
||
|
||
############################## | ||
# Discriminator | ||
############################## | ||
|
||
class Discriminator(nn.Module): | ||
def __init__(self, in_channels=3, out_channels=4, dataset='BRATS2018'): | ||
super(Discriminator, self).__init__() | ||
|
||
# inp, stride, pad, dil, kernel = (256, 2, 1, 1, 8) | ||
# np.floor(((inp + 2*pad - dil*(kernel - 1) - 1)/stride) + 1) | ||
|
||
if 'BRATS' in dataset: | ||
def discriminator_block(in_filters, out_filters, normalization=True): | ||
"""Returns downsampling layers of each discriminator block""" | ||
layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)] | ||
if normalization: | ||
layers.append(nn.InstanceNorm2d(out_filters)) | ||
layers.append(nn.LeakyReLU(0.2, inplace=True)) | ||
return layers | ||
|
||
self.model = nn.Sequential( | ||
*discriminator_block(in_channels*2, 64, normalization=False), | ||
*discriminator_block(64, 128), | ||
*discriminator_block(128, 256), | ||
*discriminator_block(256, 512), | ||
nn.ZeroPad2d((1, 0, 1, 0)), | ||
nn.Conv2d(512, out_channels, 4, padding=1, bias=False) | ||
) | ||
else: | ||
# FOR ISLES2015 | ||
def discriminator_block(in_filters, out_filters, normalization=True): | ||
"""Returns downsampling layers of each discriminator block""" | ||
layers = [nn.Conv2d(in_filters, out_filters, 4, stride=4, padding=1)] | ||
if normalization: | ||
layers.append(nn.InstanceNorm2d(out_filters)) | ||
layers.append(nn.LeakyReLU(0.2, inplace=True)) | ||
return layers | ||
|
||
self.model = nn.Sequential( | ||
*discriminator_block(in_channels * 2, 8, normalization=False), | ||
*discriminator_block(8, 8), | ||
nn.ZeroPad2d((1, 0, 1, 0)), | ||
nn.Conv2d(8, out_channels, 4, padding=1, bias=False) | ||
) | ||
|
||
def forward(self, img_A, img_B): | ||
# Concatenate image and condition image by channels to produce input | ||
img_input = torch.cat((img_A, img_B), 1) | ||
return self.model(img_input) |
Oops, something went wrong.