Skip to content
forked from kube-rs/kube

Rust Kubernetes client and controller runtime

License

Notifications You must be signed in to change notification settings

tottoto/kube-rs

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kube-rs

Crates.io Rust 1.81 Tested against Kubernetes v1.28 and above Best Practices Discord chat

A Rust client for Kubernetes in the style of a more generic client-go, a runtime abstraction inspired by controller-runtime, and a derive macro for CRDs inspired by kubebuilder. Hosted by CNCF as a Sandbox Project.

These crates build upon Kubernetes apimachinery + api concepts to enable generic abstractions. These abstractions allow Rust reinterpretations of reflectors, controllers, and custom resource interfaces, so that you can write applications easily.

Installation

Select a version of kube along with the generated k8s-openapi structs at your chosen Kubernetes version:

[dependencies]
kube = { version = "0.98.0", features = ["runtime", "derive"] }
k8s-openapi = { version = "0.24.0", features = ["latest"] }

See features for a quick overview of default-enabled / opt-in functionality.

Upgrading

See kube.rs/upgrading. Noteworthy changes are highlighted in releases, and archived in the changelog.

Usage

See the examples directory for how to use any of these crates.

Official examples:

For real world projects see ADOPTERS.

Api

The Api is what interacts with Kubernetes resources, and is generic over Resource:

use k8s_openapi::api::core::v1::Pod;
let pods: Api<Pod> = Api::default_namespaced(client);

let pod = pods.get("blog").await?;
println!("Got pod: {pod:?}");

let patch = json!({"spec": {
    "activeDeadlineSeconds": 5
}});
let pp = PatchParams::apply("kube");
let patched = pods.patch("blog", &pp, &Patch::Apply(patch)).await?;
assert_eq!(patched.spec.active_deadline_seconds, Some(5));

pods.delete("blog", &DeleteParams::default()).await?;

See the examples ending in _api examples for more detail.

Custom Resource Definitions

Working with custom resources uses automatic code-generation via proc_macros in kube-derive.

You need to add #[derive(CustomResource, JsonSchema)] and some #[kube(attrs..)] on a spec struct:

#[derive(CustomResource, Debug, Serialize, Deserialize, Default, Clone, JsonSchema)]
#[kube(group = "kube.rs", version = "v1", kind = "Document", namespaced)]
pub struct DocumentSpec {
    title: String,
    content: String,
}

Then you can use the generated wrapper struct Document as a kube::Resource:

let docs: Api<Document> = Api::default_namespaced(client);
let d = Document::new("guide", DocumentSpec::default());
println!("doc: {:?}", d);
println!("crd: {:?}", serde_yaml::to_string(&Document::crd()));

There are a ton of kubebuilder-like instructions that you can annotate with here. See the documentation or the crd_ prefixed examples for more.

NB: #[derive(CustomResource)] requires the derive feature enabled on kube.

Runtime

The runtime module exports the kube_runtime crate and contains higher level abstractions on top of the Api and Resource types so that you don't have to do all the watch/resourceVersion/storage book-keeping yourself.

Watchers

A streaming interface (similar to informers) that presents watcher::Events and does automatic relists under the hood.

let api = Api::<Pod>::default_namespaced(client);
let stream = watcher(api, Config::default()).default_backoff().applied_objects();

This now gives a continual stream of events and you do not need to care about the watch having to restart, or connections dropping.

while let Some(event) = stream.try_next().await? {
    println!("Applied: {}", event.name_any());
}

Note the base items from a watcher stream are an abstraction above the native WatchEvent to allow for store buffering. If you are following along to "see what changed", you can use utilities from WatchStreamExt, such as applied_objects to get a more conventional stream.

Reflectors

A reflector is a watcher with Store on K. It acts on all the Event<K> exposed by watcher to ensure that the state in the Store is as accurate as possible.

let nodes: Api<Node> = Api::all(client);
let lp = Config::default().labels("kubernetes.io/arch=amd64");
let (reader, writer) = reflector::store();
let rf = reflector(writer, watcher(nodes, lp));

At this point you can listen to the reflector as if it was a watcher, but you can also query the reader at any point.

Controllers

A Controller is a reflector along with an arbitrary number of watchers that schedule events internally to send events through a reconciler:

Controller::new(root_kind_api, Config::default())
    .owns(child_kind_api, Config::default())
    .run(reconcile, error_policy, context)
    .for_each(|res| async move {
        match res {
            Ok(o) => info!("reconciled {:?}", o),
            Err(e) => warn!("reconcile failed: {}", Report::from(e)),
        }
    })
    .await;

Here reconcile and error_policy refer to functions you define. The first will be called when the root or child elements change, and the second when the reconciler returns an Err.

See the controller guide for how to write these.

TLS

By default rustls is used for TLS, but openssl is supported. To switch, turn off default-features, and enable the openssl-tls feature:

[dependencies]
kube = { version = "0.98.0", default-features = false, features = ["client", "openssl-tls"] }
k8s-openapi = { version = "0.24.0", features = ["latest"] }

This will pull in openssl and hyper-openssl. If default-features is left enabled, you will pull in two TLS stacks, and the default will remain as rustls.

musl-libc

Kube will work with distroless, scratch, and alpine (it's also possible to use alpine as a builder with some caveats).

License

Apache 2.0 licensed. See LICENSE for details.

About

Rust Kubernetes client and controller runtime

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Rust 98.9%
  • Other 1.1%