Skip to content

Commit

Permalink
Stopdwords
Browse files Browse the repository at this point in the history
  • Loading branch information
Christian A committed Jun 25, 2024
1 parent 710eadd commit 5f6a2c8
Showing 1 changed file with 252 additions and 0 deletions.
252 changes: 252 additions & 0 deletions Group-8-Retrieval-System/bm25_stopwords.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"PyTerrier 0.10.0 has loaded Terrier 5.8 (built by craigm on 2023-11-01 18:05) and terrier-helper 0.0.8\n",
"\n",
"No etc/terrier.properties, using terrier.default.properties for bootstrap configuration.\n"
]
}
],
"source": [
"# Imports\n",
"from tira.third_party_integrations import ensure_pyterrier_is_loaded, persist_and_normalize_run\n",
"from tira.rest_api_client import Client\n",
"\n",
"import pyterrier as pt\n",
"\n",
"# Create a REST client to the TIRA platform for retrieving the pre-indexed data.\n",
"ensure_pyterrier_is_loaded()\n",
"tira = Client()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# The dataset: the union of the IR Anthology and the ACL Anthology\n",
"# This line creates an IRDSDataset object and registers it under the name provided as an argument.\n",
"dataset = 'antique-test-20230107-training'\n",
"\n",
"pt_dataset = pt.get_dataset('irds:ir-lab-sose-2024/ir-acl-anthology-20240504-training')\n",
"\n",
"# A (pre-built) PyTerrier index loaded from TIRA\n",
"index = tira.pt.index('ir-lab-sose-2024/tira-ir-starter/Index (tira-ir-starter-pyterrier)', pt_dataset)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"bm25 = pt.BatchRetrieve(index, wmodel=\"BM25\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Stopwords"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def create_index(documents, stopwords):\n",
" indexer = pt.IterDictIndexer(\"/tmp/index\", overwrite=True, meta={'docno': 100, 'text': 20480}, stopwords=customStopwords)\n",
" index_ref = indexer.index(documents)\n",
" return pt.IndexFactory.of(index_ref)\n",
"\n",
"customStopwords =[\n",
" 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', \n",
" 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', \n",
" 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', \n",
" 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', \n",
" 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', \n",
" 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', \n",
" 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', \n",
" 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', \n",
" 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', \n",
" 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', \n",
" 'no', 'nor', 'not', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'can', \n",
" 'will', 'just', 'don', 'should', 'now'\n",
"]\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"ir-lab-sose-2024/ir-acl-anthology-20240504-training documents: 71%|███████ | 90005/126958 [00:22<00:08, 4212.71it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"19:23:10.931 [ForkJoinPool-1-worker-3] WARN org.terrier.structures.indexing.Indexer - Adding an empty document to the index (2020.mir_conference-2020.1) - further warnings are suppressed\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"ir-lab-sose-2024/ir-acl-anthology-20240504-training documents: 100%|██████████| 126958/126958 [00:31<00:00, 4002.84it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"19:23:24.124 [ForkJoinPool-1-worker-3] WARN org.terrier.structures.indexing.Indexer - Indexed 3 empty documents\n"
]
}
],
"source": [
"index = create_index(pt_dataset.get_corpus_iter(), customStopwords)\n",
"\n",
"bm25_stopwords = pt.BatchRetrieve(index, wmodel=\"BM25\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Evaluation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>name</th>\n",
" <th>recall_1000</th>\n",
" <th>ndcg_cut_5</th>\n",
" <th>ndcg_cut.10</th>\n",
" <th>recip_rank</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>BM25_Stopwords</td>\n",
" <td>0.83441</td>\n",
" <td>0.382805</td>\n",
" <td>0.367656</td>\n",
" <td>0.581239</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" name recall_1000 ndcg_cut_5 ndcg_cut.10 recip_rank\n",
"0 BM25_Stopwords 0.83441 0.382805 0.367656 0.581239"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pt.Experiment(\n",
" retr_systems=[bm25_stopwords],\n",
" topics=pt_dataset.get_topics('text'),\n",
" qrels=pt_dataset.get_qrels(),\n",
" names=['BM25_Stopwords'],\n",
" eval_metrics=['recall_1000', 'ndcg_cut_5', 'ndcg_cut.10', 'recip_rank']\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"run = bm25_stopwords(pt_dataset.get_topics('text'))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The run file is normalized outside the TIRA sandbox, I will store it at \"../runs\".\n",
"Done. run file is stored under \"../runs/run.txt\".\n"
]
}
],
"source": [
"persist_and_normalize_run(run, system_name='bm25-baseline', default_output='../runs')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

0 comments on commit 5f6a2c8

Please sign in to comment.