Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Export raw Chianti collision and A_ul data instead of pre-processing #414

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion carsus/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,4 +28,4 @@
logging.getLogger('py.warnings').addHandler(console_handler)

# Set atomic file format version
FORMAT_VERSION = "1.0"
FORMAT_VERSION = "2.0"
10 changes: 6 additions & 4 deletions carsus/io/chianti_/chianti_.py
Original file line number Diff line number Diff line change
Expand Up @@ -192,8 +192,9 @@ def read_levels(self):
levels = pd.DataFrame(levels_dict)

# Replace empty labels with NaN
levels.loc[:, "label"] = levels["label"].replace(
r'\s+', np.nan, regex=True)
with pd.option_context('future.no_silent_downcasting', True):
levels.loc[:, "label"] = levels["label"].replace(
r'\s+', np.nan, regex=True).infer_objects(copy=False)

# Extract configuration and term from the "pretty" column
levels[["term", "configuration"]] = levels["pretty"].str.rsplit(
Expand Down Expand Up @@ -355,7 +356,8 @@ def _get_levels_lines(self, get_collisions=False):
lines = lines.reset_index()
lines = lines.rename(columns={'lower_level_index': 'level_index_lower',
'upper_level_index': 'level_index_upper',
'gf_value': 'gf'})
'gf_value': 'gf',
'a_value': 'A_ul'})

# Kurucz levels starts from zero, Chianti from 1.
lines['level_index_lower'] = lines['level_index_lower'] - 1
Expand All @@ -368,7 +370,7 @@ def _get_levels_lines(self, get_collisions=False):
lines['j_upper'] = None
lines['j_lower'] = None
lines = lines[['energy_upper', 'j_upper', 'energy_lower', 'j_lower',
'wavelength', 'gf']]
'wavelength', 'gf', 'A_ul']]

lines['wavelength'] = u.Quantity(lines['wavelength'], u.AA).to('nm').value

Expand Down
4 changes: 2 additions & 2 deletions carsus/io/nist/weightscomp.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,8 +125,8 @@ def load(self, input_data):

def _prepare_atomic_weights(self, atomic):
grouped = atomic.groupby([AW_TYPE_COL])
interval_gr = grouped.get_group(INTERVAL).copy()
stable_mass_num_gr = grouped.get_group(STABLE_MASS_NUM).copy()
interval_gr = grouped.get_group((INTERVAL,)).copy()
stable_mass_num_gr = grouped.get_group((STABLE_MASS_NUM,)).copy()

def atomic_weight_interval_to_nom_val_and_std(row):
nom_val, std_dev = to_nom_val_and_std_dev(
Expand Down
8 changes: 3 additions & 5 deletions carsus/io/output/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ def __init__(
"levels_metastable_loggf_threshold": -3,
"lines_loggf_threshold": -3,
},
collisions_param={"temperatures": np.arange(2000, 50000, 2000)},
):
self.atomic_weights = atomic_weights

Expand All @@ -61,7 +60,6 @@ def __init__(
self.vald_reader = vald_reader
self.barklem_2016_data = barklem_2016_data
self.levels_lines_param = levels_lines_param
self.collisions_param = collisions_param

self.ionization_energies_preparer = IonizationEnergiesPreparer(self.cmfgen_reader, ionization_energies)

Expand All @@ -86,7 +84,7 @@ def __init__(
if cmfgen_reader is not None and hasattr(cmfgen_reader, "collisions"):
self.collisions_preparer = CollisionsPreparer(self.cmfgen_reader)
elif hasattr(chianti_reader, "collisions"):
self.collisions_preparer = ChiantiCollisionsPreparer(self.chianti_reader, self.levels, self.levels_all, self.lines_all, self.levels_lines_preparer.chianti_ions, self.collisions_param)
self.collisions_preparer = ChiantiCollisionsPreparer(self.chianti_reader, self.levels, self.levels_all, self.lines_all, self.levels_lines_preparer.chianti_ions)
else:
logger.warning("No source of collisions was selected.")
self.collisions_preparer = None
Expand Down Expand Up @@ -196,8 +194,8 @@ def to_hdf(self, fname):
"/molecules/ionization_energies": (self.barklem_2016_data, "ionization_energies"),
"/molecules/dissociation_energies": (self.barklem_2016_data, "dissociation_energies"),
"/molecules/partition_functions": (self.barklem_2016_data, "partition_functions"),
"/collisions_data": (self.collisions_preparer, "collisions_prepared"),
"/collisions_metadata": (self.collisions_preparer, "collisions_metadata"),
"/collisions_data": (self, "collisions_prepared"),
"/collisions_metadata": (self, "collisions_metadata"),
"/photoionization_data": (self.cross_sections_preparer, "cross_sections_prepared"),
}

Expand Down
112 changes: 29 additions & 83 deletions carsus/io/output/collisions.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,13 @@
import logging
import re

import astropy.constants as const
import numpy as np
import pandas as pd
from scipy import interpolate

from carsus.io.util import get_lvl_index2id, exclude_artificial_levels

logger = logging.getLogger(__name__)


class CollisionsPreparer:
def __init__(self, reader):
collisions = reader.collisions.copy()
Expand All @@ -24,7 +22,7 @@ def __init__(self, reader):

self.collisions = collisions
self.collisions_metadata = reader.collisional_metadata

def prepare_collisions(self):
"""
Prepare the DataFrame with electron collisions for TARDIS.
Expand All @@ -43,13 +41,22 @@ def prepare_collisions(self):
]

if "chianti" in self.collisions_metadata.dataset:
collisions_columns = (
collisions_index
+ ["g_ratio", "delta_e"]
+ sorted(
[col for col in self.collisions.columns if re.match(r"^t\d+$", col)]
)
)
collisions_columns = collisions_index + [
"e_col_id",
"lower_level_id",
"upper_level_id",
"btemp",
"bscups",
"ttype",
"cups",
"gf",
"g_l",
"energy_lower",
"g_u",
"energy_upper",
"delta_e",
"g_ratio",
]

elif "cmfgen" in self.collisions_metadata.dataset:
collisions_columns = collisions_index + list(self.collisions.columns)
Expand All @@ -61,34 +68,32 @@ def prepare_collisions(self):
self.collisions.reset_index().loc[:, collisions_columns].copy()
)
self.collisions_prepared = collisions_prepared.set_index(collisions_index)


class ChiantiCollisionsPreparer(CollisionsPreparer):
def __init__(
self,
chianti_reader,
levels,
levels_all,
lines_all,
chianti_ions,
collisions_param = {"temperatures": np.arange(2000, 50000, 2000)}
):
self,
chianti_reader,
levels,
levels_all,
lines_all,
chianti_ions,
):
self.chianti_reader = chianti_reader
self.levels = levels
self.levels_all = levels_all
self.lines_all = lines_all
self.chianti_ions = chianti_ions

self.collisions = self.create_chianti_collisions(**collisions_param)
self.collisions = self.create_chianti_collisions()
self.collisions_metadata = pd.Series(
{
"temperatures": collisions_param["temperatures"],
"dataset": ["chianti"],
"info": None,
}
)
def create_chianti_collisions(self, temperatures=np.arange(2000, 50000, 2000)):

def create_chianti_collisions(self):
"""
Generates the definitive `collisions` DataFrame by adding new columns
and making some calculations.
Expand Down Expand Up @@ -169,9 +174,6 @@ def create_chianti_collisions(self, temperatures=np.arange(2000, 50000, 2000)):
# Calculate g_ratio
collisions["g_ratio"] = collisions["g_l"] / collisions["g_u"]

# Derive columns for collisional strengths
c_ul_temperature_cols = ["t{:06d}".format(t) for t in temperatures]

collisions = collisions.rename(
columns={"temperatures": "btemp", "collision_strengths": "bscups"}
)
Expand Down Expand Up @@ -200,62 +202,6 @@ def create_chianti_collisions(self, temperatures=np.arange(2000, 50000, 2000)):
]
]

collisional_ul_factors = collisions.apply(
calculate_collisional_strength,
axis=1,
args=(temperatures, kb_ev, c_ul_temperature_cols),
)

collisions = pd.concat([collisions, collisional_ul_factors], axis=1)
collisions = collisions.set_index("e_col_id")

return collisions

def calculate_collisional_strength(
row, temperatures, kb_ev, c_ul_temperature_cols
):
"""
Function to calculation upsilon from Burgess & Tully 1992 (TType 1 - 4; Eq. 23 - 38).

"""

c = row["cups"]
x_knots = np.linspace(0, 1, len(row["btemp"]))
y_knots = row["bscups"]
delta_e = row["delta_e"]
g_u = row["g_u"]

ttype = row["ttype"]
if ttype > 5:
ttype -= 5

kt = kb_ev * temperatures

spline_tck = interpolate.splrep(x_knots, y_knots)

if ttype == 1:
x = 1 - np.log(c) / np.log(kt / delta_e + c)
y_func = interpolate.splev(x, spline_tck)
upsilon = y_func * np.log(kt / delta_e + np.exp(1))

elif ttype == 2:
x = (kt / delta_e) / (kt / delta_e + c)
y_func = interpolate.splev(x, spline_tck)
upsilon = y_func

elif ttype == 3:
x = (kt / delta_e) / (kt / delta_e + c)
y_func = interpolate.splev(x, spline_tck)
upsilon = y_func / (kt / delta_e + 1)

elif ttype == 4:
x = 1 - np.log(c) / np.log(kt / delta_e + c)
y_func = interpolate.splev(x, spline_tck)
upsilon = y_func * np.log(kt / delta_e + c)

elif ttype == 5:
raise ValueError("Not sure what to do with ttype=5")

#### 1992A&A...254..436B Equation 20 & 22 #####
collisional_ul_factor = 8.63e-6 * upsilon / (g_u * temperatures**0.5)
return pd.Series(data=collisional_ul_factor, index=c_ul_temperature_cols)
16 changes: 10 additions & 6 deletions carsus/io/output/levels_lines.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ def all_lines_data(self):
)

lines = lines[
["lower_level_id", "upper_level_id", "wavelength", "gf", "loggf", "ds_id"]
["lower_level_id", "upper_level_id", "wavelength", "gf", "loggf", "A_ul", "ds_id"]
]

return lines
Expand Down Expand Up @@ -424,8 +424,12 @@ def create_levels_lines(
pd.DataFrame(index=levels.index), on="lower_level_id", how="inner"
).join(pd.DataFrame(index=levels.index), on="upper_level_id", how="inner")

# Culling lines with low gf values
lines = lines.loc[lines["loggf"] > lines_loggf_threshold]
# Culling lines with low gf values if needed
if lines_loggf_threshold > -99:
lines = lines.loc[lines["loggf"] < lines_loggf_threshold]

# get a mask of the lines with loggf above the threshold
high_gf_mask = lines["loggf"] > lines_loggf_threshold

# Do not clean levels that don't exist in lines

Expand Down Expand Up @@ -480,7 +484,7 @@ def create_levels_lines(
lines["nu"] = u.Quantity(lines["wavelength"], "AA").to("Hz", u.spectral()).value

# Create Einstein coefficients
create_einstein_coeff(lines)
create_einstein_coeff(lines, high_gf_mask)

# Reset indexes because `level_id` cannot be an index once we
# add artificial levels for fully ionized ions that don't have ids (-1)
Expand All @@ -495,7 +499,7 @@ def create_levels_lines(
self.levels = levels
self.lines = lines

def create_einstein_coeff(lines):
def create_einstein_coeff(lines, high_gf_mask):
"""
Create Einstein coefficients columns for the `lines` DataFrame.

Expand All @@ -517,7 +521,7 @@ def create_einstein_coeff(lines):
einstein_coeff * lines["f_ul"] / (const.h.cgs.value * lines["nu"])
)

lines["A_ul"] = (
lines.loc[high_gf_mask, "A_ul"] = (
2
* einstein_coeff
* lines["nu"] ** 2
Expand Down