-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext.cpp
819 lines (670 loc) · 23 KB
/
text.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/* Jzip V2.1 Infocom/Inform Zcode Format Interpreter
* --------------------------------------------------------------------
* Copyright (c) 2000 John D. Holder. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* --------------------------------------------------------------------
*/
/*
* Modified by Louis Davis April, 2012
* Arduino support.
*
*/
/*
* text.c
*
* Text manipulation routines
*
*/
#include "ztypes.h"
/*
* decode_text
*
* Convert ZSCII encoded text to ASCII. Text is encoded by squeezing each character
* into 5 bits. 3 x 5 bit encoded characters can fit in one word with a spare
* bit left over. The spare bit is used to signal to end of a string. The 5 bit
* encoded characters can either be actual character codes or prefix codes that
* modifier the following code.
*
*/
void decode_text( unsigned long *address )
{
int i, synonym_flag, synonym = 0, zscii_flag, zscii = 0;
int data, code, shift_state, shift_lock;
unsigned long addr;
/* Set state variables */
shift_state = 0;
shift_lock = 0;
zscii_flag = 0;
synonym_flag = 0;
do
{
/*
* Read one 16 bit word. Each word contains three 5 bit codes. If the
* high bit is set then this is the last word in the string.
*/
data = read_data_word( address );
for ( i = 10; i >= 0; i -= 5 )
{
/* Get code, high bits first */
code = ( data >> i ) & 0x1f;
/* Synonym codes */
if ( synonym_flag )
{
synonym_flag = 0;
synonym = ( synonym - 1 ) * 64;
addr = ( unsigned long ) get_word( h_synonyms_offset + synonym + ( code * 2 ) ) * 2;
decode_text( &addr );
shift_state = shift_lock;
}
/* ZSCII codes */
else if ( zscii_flag )
{
/*
* If this is the first part ZSCII ten-bit code then remember it.
* Because the codes are only 5 bits you need two codes to make
* one eight bit ASCII character. The first code contains the
* top 5 bits (although only 3 bits are used at the moment).
* The second code contains the bottom 5 bits.
*/
if ( zscii_flag++ == 1 )
{
zscii = code << 5;
}
/*
* If this is the second part of a ten-bit ZSCII code then assemble the
* character from the two codes and output it.
*/
else
{
zscii_flag = 0;
write_zchar( ( unsigned char ) ( zscii | code ) );
}
}
/* Character codes */
else if ( code > 5 )
{
code -= 6;
/*
* If this is character 0 in the punctuation set then the next two
* codes make a ten-bit ZSCII character. (Std. Sec. 3.4)
*/
if ( shift_state == 2 && code == 0 )
{
zscii_flag = 1;
}
/*
* If this is character 1 in the punctuation set then this
* is a new line.
*/
else if ( shift_state == 2 && code == 1 && h_type > V1 )
{
z_new_line( );
}
/*
* This is a normal character so select it from the character
* table appropriate for the current shift state.
*/
else
{
write_zchar( pgm_read_byte(&lookup_table[shift_state][code]) );
}
shift_state = shift_lock;
}
/* Special codes 0 to 5 */
else
{
/* Space: 0 Output a space character. */
if ( code == 0 )
{
write_zchar( ' ' );
}
else
{
/* The use of the synonym and shift codes is the only
* difference between the different versions.
*/
if ( h_type < V3 )
{
/* Newline or synonym: 1
* Output a newline character or set synonym flag.
*/
if ( code == 1 )
{
if ( h_type == V1 )
{
z_new_line( );
}
else
{
synonym_flag = 1;
synonym = code;
}
}
else
{
/*
* Shift keys: 2, 3, 4 or 5
*
* Shift keys 2 & 3 only shift the next character and can be used regardless of
* the state of the shift lock. Shift keys 4 & 5 lock the shift until reset.
*
* The following code implements the the shift code state transitions:
* +-------------+-------------+-------------+-------------+
* | Shift State | Lock State |
* +-------------+-------------+-------------+-------------+-------------+
* | Code | 2 | 3 | 4 | 5 |
* +-------------+-------------+-------------+-------------+-------------+
* | lowercase | uppercase | punctuation | uppercase | punctuation |
* | uppercase | punctuation | lowercase | punctuation | lowercase |
* | punctuation | lowercase | uppercase | lowercase | uppercase |
* +-------------+-------------+-------------+-------------+-------------+
*/
if ( code < 4 )
{
shift_state = ( shift_lock + code + 2 ) % 3;
}
else
{
shift_lock = shift_state = ( shift_lock + code ) % 3;
}
}
}
else /* not V3 */
{
/*
* Synonym table: 1, 2 or 3
*
* Selects which of three synonym tables the synonym
* code following in the next code is to use.
*/
if ( code < 4 )
{
synonym_flag = 1;
synonym = code;
}
/*
* Shift key: 4 or 5
*
* Selects the shift state for the next character,
* either uppercase (4) or punctuation (5). The shift
* state automatically gets reset back to lowercase for
* V3+ games after the next character is output.
*
*/
else
{
shift_state = code - 3;
shift_lock = 0;
}
}
}
}
}
}
while ( ( data & 0x8000 ) == 0 );
} /* decode_text */
/*
* encode_text
*
* Pack a string into up to 9 codes or 3 words.
*
*/
void encode_text( int len, unsigned long s_addr, ZINT16 * buffer )
{
int i, j, prev_table, table, next_table, shift_state, code, codes_count;
char codes[9];
/* Initialise codes count and prev_table number */
codes_count = 0;
prev_table = 0;
/* Scan do the string one character at a time */
while ( len-- )
{
/*
* Set the table and code to be the ASCII character inducer, then
* look for the character in the three lookup tables. If the
* character isn't found then it will be an ASCII character.
*/
table = 2;
code = 0;
for ( i = 0; i < 3; i++ )
{
for ( j = 0; j < 26; j++ )
{
if ( pgm_read_byte(&lookup_table[i][j]) == get_byte(s_addr) )
{
table = i;
code = j;
}
}
}
/*
* Type 1 and 2 games differ on how the shift keys are used. Switch
* now depending on the game version.
*/
if ( h_type < V3 )
{
/*
* If the current table is the same as the previous table then
* just store the character code, otherwise switch tables.
*/
if ( table != prev_table )
{
/* Find the table for the next character */
next_table = 0;
if ( len )
{
next_table = 2;
for ( i = 0; i < 3; i++ )
{
for ( j = 0; j < 26; j++ )
{
if ( pgm_read_byte(&lookup_table[i][j]) == get_byte(s_addr + 1) )
next_table = i;
}
}
}
/*
* Calculate the shift key. This magic. See the description in
* decode_text for more information on version 1 and 2 shift
* key changes.
*/
shift_state = ( table + ( prev_table * 2 ) ) % 3;
/* Only store the shift key if there is a change in table */
if ( shift_state )
{
/*
* If the next character as the uses the same table as
* this character then change the shift from a single
* shift to a shift lock. Also remember the current
* table for the next iteration.
*/
if ( next_table == table )
{
shift_state += 2;
prev_table = table;
}
else
prev_table = 0;
/* Store the code in the codes buffer */
if ( codes_count < 9 )
codes[codes_count++] = ( char ) ( shift_state + 1 );
}
}
}
else
{
/*
* For V3 games each uppercase or punctuation table is preceded
* by a separate shift key. If this is such a shift key then
* put it in the codes buffer.
*/
if ( table && codes_count < 9 )
codes[codes_count++] = ( char ) ( table + 3 );
}
/* Put the character code in the code buffer */
if ( codes_count < 9 )
codes[codes_count++] = ( char ) ( code + 6 );
/*
* Cannot find character in table so treat it as a literal ASCII
* code. The ASCII code inducer (code 0 in table 2) is followed by
* the high 3 bits of the ASCII character followed by the low 5
* bits to make 8 bits in total.
*/
if ( table == 2 && code == 0 )
{
if ( codes_count < 9 )
codes[codes_count++] = ( char ) ( ( get_byte(s_addr) >> 5 ) & 0x07 );
if ( codes_count < 9 )
codes[codes_count++] = ( char ) ( get_byte(s_addr) & 0x1f );
}
/* Advance to next character */
s_addr++;
}
/* Pad out codes with shift 5's */
while ( codes_count < 9 )
codes[codes_count++] = 5;
/* Pack codes into buffer */
buffer[0] = ( ( ZINT16 ) codes[0] << 10 ) | ( ( ZINT16 ) codes[1] << 5 ) | ( ZINT16 ) codes[2];
buffer[1] = ( ( ZINT16 ) codes[3] << 10 ) | ( ( ZINT16 ) codes[4] << 5 ) | ( ZINT16 ) codes[5];
buffer[2] = ( ( ZINT16 ) codes[6] << 10 ) | ( ( ZINT16 ) codes[7] << 5 ) | ( ZINT16 ) codes[8];
/* Terminate buffer at 6 or 9 codes depending on the version */
if ( h_type < V4 )
buffer[1] |= 0x8000;
else
buffer[2] |= 0x8000;
} /* encode_text */
/*
* write_zchar
*
* High level Z-code character output routine. Translates Z-code characters to
* machine specific character(s) before output. If it cannot translate it then
* use the default translation. If the character is still unknown then display
* a '?'.
*
*/
void write_zchar( int c )
{
char xlat_buffer[MAX_TEXT_SIZE + 1];
int i;
c = ( unsigned int ) ( c & 0xff );
/* If character is not special character then just write it */
if ( c >= ' ' && c <= '~' )
{
write_char( c );
}
else if ( c == 13 )
{
write_char( '\r' );
}
else
{
/* Put default character in translation buffer */
xlat_buffer[0] = '?';
xlat_buffer[1] = '\0';
/* If translation fails then supply a default */
if ( 1 )
{
if ( c > 23 && c < 28 )
{
/* Arrow keys - these must the keyboard keys used for input */
static char xlat[4] = { '\\', '/', '+', '-' };
xlat_buffer[0] = xlat[c - 24];
xlat_buffer[1] = '\0';
}
else if ( c == 0 )
{
/* Null - print nothing */
xlat_buffer[0] = '\0';
}
else if ( c < 32 )
{
/* Some other control character: print an octal escape. */
xlat_buffer[0] = '\\';
xlat_buffer[1] = ( char ) ( '0' + ( ( c >> 6 ) & 7 ) );
xlat_buffer[2] = ( char ) ( '0' + ( ( c >> 3 ) & 7 ) );
xlat_buffer[3] = ( char ) ( '0' + ( c & 7 ) );
xlat_buffer[4] = '\0';
}
else if ( c > 178 && c < 219 )
{
/* IBM line drawing characters to ASCII characters */
if ( c == 179 )
xlat_buffer[0] = '|';
else if ( c == 186 )
xlat_buffer[0] = '#';
else if ( c == 196 )
xlat_buffer[0] = '-';
else if ( c == 205 )
xlat_buffer[0] = '=';
else
xlat_buffer[0] = '+';
xlat_buffer[1] = '\0';
}
else if ( c > 154 && c < 164 )
{
/* German character replacements */
static char xlat[] = "aeoeueAeOeUess>><<";
xlat_buffer[0] = xlat[( ( c - 155 ) * 2 ) + 0];
xlat_buffer[1] = xlat[( ( c - 155 ) * 2 ) + 1];
xlat_buffer[2] = '\0';
}
}
/* Substitute translated characters */
for ( i = 0; xlat_buffer[i] != '\0'; i++ )
{
write_char( ( unsigned char ) xlat_buffer[i] );
}
}
} /* write_zchar */
/*
* write_char
*
* High level character output routine. The write_char routine is slightly
* complicated by the fact that the output can be limited by a fixed character
* count, as well as, filling up the buffer.
*
*/
void write_char( int c )
{
static unsigned char line_count = 0;
if ( screen_window == TEXT_WINDOW )
{
/*if(c == '\n')
line_count = 0;
else
{
line_count++;
if(line_count >= 80)
{
line_count = 1;
Serial.write('\n');
}
}
Serial.println("here");
Serial.write(c);*/
processreadfromsd(c);
}
} /* write_char */
/*
* write_string
*
* Output a string
*
*/
void write_string( const char *s )
{
while ( *s )
write_char( *s++ );
} /* write_string */
/*
* z_output_stream
*
* Set various printing modes. These can be: disabling output, scripting and
* redirecting output. Redirection is peculiar. I use it to format the status
* line for V1 to V3 games, otherwise it wasn't used. V4 games format the
* status line themselves in an internal buffer in the writeable data area.
* To use the normal text decoding routines they have to redirect output to
* the writeable data area. This is done by passing in a buffer pointer.
* The first word of the buffer will receive the number of characters
* written since the output was redirected. The remainder of the buffer
* will contain the redirected text.
*
*/
void z_output_stream( zword_t type, zword_t option )
{
if( ( ZINT16 )type == 3)
{
screen_window = STATUS_WINDOW;
}
else if( ( ZINT16 )type == -3)
{
screen_window = TEXT_WINDOW;
}
} /* z_output_stream */
/*
* z_print_char
*
* Write a character.
*
*/
void z_print_char( zword_t c )
{
write_zchar( ( char ) c );
} /* z_print_char */
/*
* z_print_num
*
* Write a signed number.
*
*/
void z_print_num( zword_t num )
{
int i, count;
char buffer[10];
i = ( ZINT16 ) num;
sprintf( buffer, "%d", i );
count = strlen( buffer );
for ( i = 0; i < count; i++ )
write_char( buffer[i] );
} /* z_print_num */
/*
* z_print_paddr
*
* Print using a packed address. Packed addresses are used to save space and
* reference addresses outside of the data region.
*
*/
void z_print_paddr( zword_t packed_address )
{
unsigned long address;
/* Convert packed address to real address */
address = ( unsigned long ) packed_address * story_scaler;
/* Decode and output text at address */
decode_text( &address );
} /* z_print_paddr */
/*
* z_print_addr
*
* Print using a real address. Real addresses are just offsets into the
* data region.
*
*/
void z_print_addr( zword_t offset )
{
unsigned long address;
address = offset;
/* Decode and output text at address */
decode_text( &address );
} /* z_print_addr */
/*
* z_print_obj
*
* Print an object description. Object descriptions are stored as ASCII
* strings at the front of the property list for the object.
*
*/
void z_print_obj( zword_t obj )
{
zword_t offset;
unsigned long address;
/* Check for NULL object */
if ( obj == 0 )
return;
/* Calculate address of property list */
offset = get_object_address( obj );
offset += ( h_type < V4 ) ? O3_PROPERTY_OFFSET : O4_PROPERTY_OFFSET;
/* Read the property list address and skip the count byte */
address = ( unsigned long ) get_word( offset ) + 1;
/* Decode and output text at address */
decode_text( &address );
} /* z_print_obj */
/*
* z_print
*
* Print the string embedded in the instruction stream at this point. All
* strings that do not need to be referenced by address are embedded in the
* instruction stream. All strings that can be refered to by address are placed
* at the end of the code region and referenced by packed address.
*
*/
void z_print( void )
{
/* Decode and output text at PC */
decode_text( &pc );
} /* z_print */
/*
* z_print_ret
*
* Print a string embedded in the instruction stream as with print_literal,
* except flush the output buffer and write a new line. After this return from
* the current subroutine with a status of true.
*
*/
void z_print_ret( void )
{
z_print( );
z_new_line( );
z_ret( TRUE );
} /* z_print_ret */
/*
* z_new_line
*
* Simply flush the current contents of the output buffer followed by a new
* line.
*
*/
void z_new_line( void )
{
write_char('\n');
} /* z_new_line */
/*
* print_time
*
* Print the time as HH:MM [am|pm]. This is a bit language dependent and can
* quite easily be changed. If you change the size of the time string output
* then adjust the status line position in display_status_line.
*
*/
void print_time( int hours, int minutes )
{
int pm_indicator;
/* Remember if time is pm */
pm_indicator = ( hours < 12 ) ? OFF : ON;
/* Convert 24 hour clock to 12 hour clock */
hours %= 12;
if ( hours == 0 )
hours = 12;
/* Write hour right justified */
if ( hours < 10 )
write_char( ' ' );
z_print_num( (zword_t)hours );
/* Write hours/minutes separator */
write_char( ':' );
/* Write minutes zero filled */
if ( minutes < 10 )
write_char( '0' );
z_print_num( (zword_t)minutes );
/* Write the am or pm string */
if ( pm_indicator == ON )
write_string( " pm" );
else
write_string( " am" );
} /* print_time */
/*
* z_encode
*
* Convert text to packed text.
*
*/
void z_encode( zword_t word_addr, zword_t word_length, zword_t word_offset, zword_t dest_addr )
{
unsigned long addr;
int i;
ZINT16 word[3];
addr = word_addr + word_offset;
/* Encode the word */
encode_text( word_length, addr, word );
/* Move the encoded word, byte swapped, into the destination buffer */
for ( i = 0; i < 3; i++, dest_addr += 2 )
set_word( dest_addr, word[i] );
} /* z_encode */