Skip to content

Commit

Permalink
missing files
Browse files Browse the repository at this point in the history
  • Loading branch information
spmallick committed Aug 28, 2018
1 parent 1e7a19a commit 942fb9f
Show file tree
Hide file tree
Showing 4 changed files with 381 additions and 0 deletions.
283 changes: 283 additions & 0 deletions faceBlendCommon.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,283 @@
#!/usr/bin/python
# Copyright 2017 BIG VISION LLC ALL RIGHTS RESERVED
#
# This code is made available to the students of
# the online course titled "Computer Vision for Faces"
# by Satya Mallick for personal non-commercial use.
#
# Sharing this code is strictly prohibited without written
# permission from Big Vision LLC.
#
# For licensing and other inquiries, please email
# [email protected]
#
import cv2
import dlib
import numpy as np
import math

# Returns 8 points on the boundary of a rectangle
def getEightBoundaryPoints(h, w):
boundaryPts = []
boundaryPts.append((0,0))
boundaryPts.append((w/2, 0))
boundaryPts.append((w-1,0))
boundaryPts.append((w-1, h/2))
boundaryPts.append((w-1, h-1))
boundaryPts.append((w/2, h-1))
boundaryPts.append((0, h-1))
boundaryPts.append((0, h/2))
return np.array(boundaryPts, dtype=np.float)


# Constrains points to be inside boundary
def constrainPoint(p, w, h):
p = (min(max(p[0], 0), w - 1), min(max(p[1], 0), h - 1))
return p

# convert Dlib shape detector object to list of tuples
def dlibLandmarksToPoints(shape):
points = []
for p in shape.parts():
pt = (p.x, p.y)
points.append(pt)
return points

# Compute similarity transform given two sets of two points.
# OpenCV requires 3 pairs of corresponding points.
# We are faking the third one.
def similarityTransform(inPoints, outPoints):
s60 = math.sin(60*math.pi/180)
c60 = math.cos(60*math.pi/180)

inPts = np.copy(inPoints).tolist()
outPts = np.copy(outPoints).tolist()

# The third point is calculated so that the three points make an equilateral triangle
xin = c60*(inPts[0][0] - inPts[1][0]) - s60*(inPts[0][1] - inPts[1][1]) + inPts[1][0]
yin = s60*(inPts[0][0] - inPts[1][0]) + c60*(inPts[0][1] - inPts[1][1]) + inPts[1][1]

inPts.append([np.int(xin), np.int(yin)])

xout = c60*(outPts[0][0] - outPts[1][0]) - s60*(outPts[0][1] - outPts[1][1]) + outPts[1][0]
yout = s60*(outPts[0][0] - outPts[1][0]) + c60*(outPts[0][1] - outPts[1][1]) + outPts[1][1]

outPts.append([np.int(xout), np.int(yout)])

# Now we can use estimateRigidTransform for calculating the similarity transform.
tform = cv2.estimateRigidTransform(np.array([inPts]), np.array([outPts]), False)
return tform

# Normalizes a facial image to a standard size given by outSize.
# Normalization is done based on Dlib's landmark points passed as pointsIn
# After normalization, left corner of the left eye is at (0.3 * w, h/3 )
# and right corner of the right eye is at ( 0.7 * w, h / 3) where w and h
# are the width and height of outSize.
def normalizeImagesAndLandmarks(outSize, imIn, pointsIn):
h, w = outSize

# Corners of the eye in input image
eyecornerSrc = [pointsIn[36], pointsIn[45]]

# Corners of the eye in normalized image
eyecornerDst = [(np.int(0.3 * w), np.int(h/3)),
(np.int(0.7 * w), np.int(h/3))]

# Calculate similarity transform
tform = similarityTransform(eyecornerSrc, eyecornerDst)
imOut = np.zeros(imIn.shape, dtype=imIn.dtype)

# Apply similarity transform to input image
imOut = cv2.warpAffine(imIn, tform, (w, h))

# reshape pointsIn from numLandmarks x 2 to numLandmarks x 1 x 2
points2 = np.reshape(pointsIn, (pointsIn.shape[0], 1, pointsIn.shape[1]))

# Apply similarity transform to landmarks
pointsOut = cv2.transform(points2, tform)

# reshape pointsOut to numLandmarks x 2
pointsOut = np.reshape(pointsOut, (pointsIn.shape[0], pointsIn.shape[1]))

return imOut, pointsOut

# find the point closest to an array of points
# pointsArray is a Nx2 and point is 1x2 ndarray
def findIndex(pointsArray, point):
dist = np.linalg.norm(pointsArray-point, axis=1)
minIndex = np.argmin(dist)
return minIndex


# Check if a point is inside a rectangle
def rectContains(rect, point):
if point[0] < rect[0]:
return False
elif point[1] < rect[1]:
return False
elif point[0] > rect[2]:
return False
elif point[1] > rect[3]:
return False
return True


# Calculate Delaunay triangles for set of points
# Returns the vector of indices of 3 points for each triangle
def calculateDelaunayTriangles(rect, points):

# Create an instance of Subdiv2D
subdiv = cv2.Subdiv2D(rect)

# Insert points into subdiv
for p in points:
subdiv.insert((p[0], p[1]))

# Get Delaunay triangulation
triangleList = subdiv.getTriangleList()

# Find the indices of triangles in the points array
delaunayTri = []

for t in triangleList:
# The triangle returned by getTriangleList is
# a list of 6 coordinates of the 3 points in
# x1, y1, x2, y2, x3, y3 format.
# Store triangle as a list of three points
pt = []
pt.append((t[0], t[1]))
pt.append((t[2], t[3]))
pt.append((t[4], t[5]))

pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])

if rectContains(rect, pt1) and rectContains(rect, pt2) and rectContains(rect, pt3):
# Variable to store a triangle as indices from list of points
ind = []
# Find the index of each vertex in the points list
for j in range(0, 3):
for k in range(0, len(points)):
if(abs(pt[j][0] - points[k][0]) < 1.0 and abs(pt[j][1] - points[k][1]) < 1.0):
ind.append(k)
# Store triangulation as a list of indices
if len(ind) == 3:
delaunayTri.append((ind[0], ind[1], ind[2]))

return delaunayTri

# Apply affine transform calculated using srcTri and dstTri to src and
# output an image of size.
def applyAffineTransform(src, srcTri, dstTri, size):

# Given a pair of triangles, find the affine transform.
warpMat = cv2.getAffineTransform(np.float32(srcTri), np.float32(dstTri))

# Apply the Affine Transform just found to the src image
dst = cv2.warpAffine(src, warpMat, (size[0], size[1]), None,
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)

return dst

# Warps and alpha blends triangular regions from img1 and img2 to img
def warpTriangle(img1, img2, t1, t2):
# Find bounding rectangle for each triangle
r1 = cv2.boundingRect(np.float32([t1]))
r2 = cv2.boundingRect(np.float32([t2]))

# Offset points by left top corner of the respective rectangles
t1Rect = []
t2Rect = []
t2RectInt = []

for i in range(0, 3):
t1Rect.append(((t1[i][0] - r1[0]), (t1[i][1] - r1[1])))
t2Rect.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))
t2RectInt.append(((t2[i][0] - r2[0]), (t2[i][1] - r2[1])))

# Get mask by filling triangle
mask = np.zeros((r2[3], r2[2], 3), dtype=np.float32)
cv2.fillConvexPoly(mask, np.int32(t2RectInt), (1.0, 1.0, 1.0), 16, 0)

# Apply warpImage to small rectangular patches
img1Rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]

size = (r2[2], r2[3])

img2Rect = applyAffineTransform(img1Rect, t1Rect, t2Rect, size)

img2Rect = img2Rect * mask

# Copy triangular region of the rectangular patch to the output image
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] * ((1.0, 1.0, 1.0) - mask)
img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] = img2[r2[1]:r2[1]+r2[3], r2[0]:r2[0]+r2[2]] + img2Rect

# detect facial landmarks in image
def getLandmarks(faceDetector, landmarkDetector, im, FACE_DOWNSAMPLE_RATIO = 1):
points = []
imSmall = cv2.resize(im,None,
fx=1.0/FACE_DOWNSAMPLE_RATIO,
fy=1.0/FACE_DOWNSAMPLE_RATIO,
interpolation = cv2.INTER_LINEAR)

faceRects = faceDetector(imSmall, 0)

if len(faceRects) > 0:
maxArea = 0
maxRect = None
# TODO: test on images with multiple faces
for face in faceRects:
if face.area() > maxArea:
maxArea = face.area()
maxRect = [face.left(),
face.top(),
face.right(),
face.bottom()
]

rect = dlib.rectangle(*maxRect)
scaledRect = dlib.rectangle(int(rect.left()*FACE_DOWNSAMPLE_RATIO),
int(rect.top()*FACE_DOWNSAMPLE_RATIO),
int(rect.right()*FACE_DOWNSAMPLE_RATIO),
int(rect.bottom()*FACE_DOWNSAMPLE_RATIO))

landmarks = landmarkDetector(im, scaledRect)
points = dlibLandmarksToPoints(landmarks)
return points

# Warps an image in a piecewise affine manner.
# The warp is defined by the movement of landmark points specified by pointsIn
# to a new location specified by pointsOut. The triangulation beween points is specified
# by their indices in delaunayTri.
def warpImage(imIn, pointsIn, pointsOut, delaunayTri):
h, w, ch = imIn.shape
# Output image
imOut = np.zeros(imIn.shape, dtype=imIn.dtype)

# Warp each input triangle to output triangle.
# The triangulation is specified by delaunayTri
for j in range(0, len(delaunayTri)):
# Input and output points corresponding to jth triangle
tin = []
tout = []

for k in range(0, 3):
# Extract a vertex of input triangle
pIn = pointsIn[delaunayTri[j][k]]
# Make sure the vertex is inside the image.
pIn = constrainPoint(pIn, w, h)

# Extract a vertex of the output triangle
pOut = pointsOut[delaunayTri[j][k]]
# Make sure the vertex is inside the image.
pOut = constrainPoint(pOut, w, h)

# Push the input vertex into input triangle
tin.append(pIn)
# Push the output vertex into output triangle
tout.append(pOut)

# Warp pixels inside input triangle to output triangle.
warpTriangle(imIn, imOut, tin, tout)
return imOut
46 changes: 46 additions & 0 deletions haarcascade_eye.xml

Large diffs are not rendered by default.

Binary file added shape_predictor_68_face_landmarks.dat
Binary file not shown.
52 changes: 52 additions & 0 deletions utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
import cv2
import matplotlib.pyplot as plt

def fixColorSpace(im):
nDims = len(im.shape)
if nDims == 3:
imOut = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
elif nDims == 2:
imOut = cv2.cvtColor(im, cv2.COLOR_GRAY2RGB)

return imOut

def imshow3(im1, im2, im3, scale = 1):
plt.figure(figsize=(15 * scale, 15 *scale));

plt.subplot(131);
plt.imshow(fixColorSpace(im1));
plt.axis('off');

plt.subplot(132);
plt.imshow(fixColorSpace(im2));
plt.axis('off');

plt.subplot(133);
plt.imshow(fixColorSpace(im3))
plt.axis('off');

plt.show()

def imshow2(im1, im2, scale = 1):

imOut1 = fixColorSpace(im1)
imOut2 = fixColorSpace(im2)

plt.figure(figsize=(15 * scale, 15 * scale))

plt.subplot(121)
plt.imshow(imOut1)
plt.axis('off')

plt.subplot(122)
plt.imshow(imOut2)
plt.axis('off')

plt.show()

def imshow(im, scale = 1):
imOut = fixColorSpace(im)
plt.figure(figsize=(15 * scale, 15 * scale))
plt.imshow(imOut)
plt.axis('off')
plt.show()

0 comments on commit 942fb9f

Please sign in to comment.