Skip to content

shilida/CL_Interactive_Argument_Pair_Identification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Simple Contrastive Learning Framework for Interactive Argument Pair Identification via Argument-Context Extraction(EMNLP 2022)

The method is implemented using PyTorch.

Folder

  • config: the config and hyperparameter file
  • data: please put data in this folder
  • dataset.py: data preprocessing file
  • models.py: model file.
  • evaluation.py: evaluation function file
  • train.py: training, validation function file
  • test.py: testing function
  • ace.py: argument-context extraction module

Train a model:

python train.py

config/hyparameter.json is the config file. It contains a number of hyperparameters. Hyperparameters can be modified for custom training.
noisy: NO,RandomWordAug,BackTranslationAug,KeyboardAug
objective:BCE,BCE+SCL
hard_sample_con:NO,YES
model_type:bert_without_context,bert_with_context

Test a model:

python test.py

Contact

[email protected]

Citation

@inproceedings{shi2022simple,
title={A Simple Contrastive Learning Framework for Interactive Argument Pair Identification via Argument-Context Extraction},
author={Shi, Lida and Giunchiglia, Fausto and Song, Rui and Shi, Daqian and Liu, Tongtong and Diao, Xiaolei and Xu, Hao},
booktitle={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
pages={10027--10039},
year={2022}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages