Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CLARA Clustering algorithm #83

Merged
merged 24 commits into from
Jun 25, 2021
Merged
Show file tree
Hide file tree
Changes from 19 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/api.rst
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ Clustering

cluster.KMedoids
cluster.CommonNNClustering
cluster.CLARA

Robust
====================
Expand Down
38 changes: 35 additions & 3 deletions doc/modules/cluster.rst
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
.. _cluster:

=====================================================
Clustering with KMedoids and Common-nearest-neighbors
=====================================================
============================================================
Clustering with KMedoids, CLARA and Common-nearest-neighbors
============================================================
.. _k_medoids:

K-Medoids
Expand Down Expand Up @@ -82,6 +82,38 @@ when speed is an issue.
for performing face recognition. International Journal of Soft Computing,
Mathematics and Control, 3(3), pp 1-12.



CLARA
=====

:class:`CLARA` is related to the :class:`KMedoids` algorithm. CLARA
(Clustering for Large Applications) extends k-medoids approach for a
large number of objects. This algorithm uses a sampling approach.
TimotheeMathieu marked this conversation as resolved.
Show resolved Hide resolved

.. topic:: Examples:

* :ref:`sphx_glr_auto_examples_plot_clara_digits.py`: Applying K-Medoids on digits
with various distance metrics.


**Algorithm description:**
CLARA use `sample` random samples of the dataset, each of size `sampling_size`
TimotheeMathieu marked this conversation as resolved.
Show resolved Hide resolved
The algorith is iterative, first we select one sub-sample, then CLARA applies
KMedoids on this sub-sample to obtain `n_clusters` medoids. At the next step,
CLARA sample `sampling_size`-`n_clusters` from the dataset and the next sub-sample
is composed of the best medoids found until now (with respect to inertia in the
whole dataset, not the inertia only on the sub-sample) to which we add the new
samples just drawn. Then, K-Medoids is applied to this new sub-sample, and loop
back until `sample` sub-samples have been used.


.. topic:: References:

* Kaufman, L. and Rousseeuw, P.J. (2008). Clustering Large Applications (Program CLARA).
In Finding Groups in Data (eds L. Kaufman and P.J. Rousseeuw).
doi:10.1002/9780470316801.ch2

.. _commonnn:

Common-nearest-neighbors clustering
Expand Down
121 changes: 121 additions & 0 deletions examples/plot_clara_digits.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
"""
======================================================================
A demo of K-Medoids vs CLARA clustering on the handwritten digits data
======================================================================
In this example we compare different computation time of K-Medoids and CLARA on
the handwritten digits data.
"""
import numpy as np
import matplotlib.pyplot as plt
import time

from sklearn_extra.cluster import KMedoids, CLARA
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

print(__doc__)

# Authors: Timo Erkkilä <[email protected]>
# Antti Lehmussola <[email protected]>
# Kornel Kiełczewski <[email protected]>
# License: BSD 3 clause

np.random.seed(42)

digits = load_digits()
data = scale(digits.data)
n_digits = len(np.unique(digits.target))

reduced_data = PCA(n_components=2).fit_transform(data)

# Step size of the mesh. Decrease to increase the quality of the VQ.
h = 0.02 # point in the mesh [x_min, m_max]x[y_min, y_max].

# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

plt.figure()
plt.clf()

plt.suptitle(
"Comparing KMedoids and CLARA",
fontsize=14,
)


selected_models = [
(
KMedoids(metric="cosine", n_clusters=n_digits),
"KMedoids (cosine)",
),
(
KMedoids(metric="manhattan", n_clusters=n_digits),
"KMedoids (manhattan)",
),
(
CLARA(
metric="cosine",
n_clusters=n_digits,
init="heuristic",
sampling_size=50,
),
"CLARA (cosine)",
),
(
CLARA(
metric="manhattan",
n_clusters=n_digits,
init="heuristic",
sampling_size=50,
),
"CLARA (manhattan)",
),
]

plot_rows = int(np.ceil(len(selected_models) / 2.0))
plot_cols = 2

for i, (model, description) in enumerate(selected_models):

# Obtain labels for each point in mesh. Use last trained model.
init_time = time.time()
model.fit(reduced_data)
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
computation_time = time.time() - init_time

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.subplot(plot_cols, plot_rows, i + 1)
plt.imshow(
Z,
interpolation="nearest",
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect="auto",
origin="lower",
)

plt.plot(
reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2, alpha=0.3
)
# Plot the centroids as a white X
centroids = model.cluster_centers_
plt.scatter(
centroids[:, 0],
centroids[:, 1],
marker="x",
s=169,
linewidths=3,
color="w",
zorder=10,
)
plt.title(description + ": %.2Fs" % (computation_time))
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())

plt.show()
4 changes: 2 additions & 2 deletions sklearn_extra/cluster/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from ._k_medoids import KMedoids
from ._k_medoids import KMedoids, CLARA
from ._commonnn import commonnn, CommonNNClustering

__all__ = ["KMedoids", "CommonNNClustering", "commonnn"]
__all__ = ["KMedoids", "CLARA", "CommonNNClustering", "commonnn"]
Loading