Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add changes to enable indexing video processing results in workflows CLI #962

Merged
merged 3 commits into from
Jan 22, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion inference/core/version.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.34.0"
__version__ = "0.35.0rc1"


if __name__ == "__main__":
Expand Down
2 changes: 1 addition & 1 deletion inference_cli/lib/workflows/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def run_video_processing_with_workflows(

from inference_cli.lib.workflows.video_adapter import process_video_with_workflow

process_video_with_workflow(
_ = process_video_with_workflow(
input_video_path=input_video_path,
output_directory=output_directory,
output_file_type=output_file_type,
Expand Down
6 changes: 6 additions & 0 deletions inference_cli/lib/workflows/entities.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,3 +34,9 @@ class ImagesDirectoryProcessingDetails:
]
aggregated_results_path: Optional[str] = field(default=None)
failures_report_path: Optional[str] = field(default=None)


@dataclass(frozen=True)
class VideoProcessingDetails:
structured_results_file: Optional[str]
video_outputs: Optional[Dict[str, str]]
40 changes: 29 additions & 11 deletions inference_cli/lib/workflows/video_adapter.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
from inference.core.utils.image_utils import load_image_bgr
from inference_cli.lib.utils import dump_jsonl
from inference_cli.lib.workflows.common import deduct_images, dump_objects_to_json
from inference_cli.lib.workflows.entities import OutputFileType
from inference_cli.lib.workflows.entities import OutputFileType, VideoProcessingDetails


def process_video_with_workflow(
Expand All @@ -31,10 +31,11 @@ def process_video_with_workflow(
max_fps: Optional[float] = None,
save_image_outputs_as_video: bool = True,
api_key: Optional[str] = None,
) -> None:
) -> VideoProcessingDetails:
structured_sink = WorkflowsStructuredDataSink(
output_directory=output_directory,
output_file_type=output_file_type,
numbers_of_streams=1,
)
progress_sink = ProgressSink.init(input_video_path=input_video_path)
sinks = [structured_sink.on_prediction, progress_sink.on_prediction]
Expand All @@ -61,9 +62,14 @@ def process_video_with_workflow(
pipeline.start(use_main_thread=True)
pipeline.join()
progress_sink.stop()
structured_sink.flush()
structured_results_file = structured_sink.flush()[0]
video_outputs = None
if video_sink is not None:
video_sink.release()
video_outputs = video_sink.release()
return VideoProcessingDetails(
structured_results_file=structured_results_file,
video_outputs=video_outputs,
)


class WorkflowsStructuredDataSink:
Expand All @@ -72,10 +78,12 @@ def __init__(
self,
output_directory: str,
output_file_type: OutputFileType,
numbers_of_streams: int = 1,
):
self._output_directory = output_directory
self._structured_results_buffer = defaultdict(list)
self._output_file_type = output_file_type
self._numbers_of_streams = numbers_of_streams

def on_prediction(
self,
Expand All @@ -94,11 +102,17 @@ def on_prediction(
}
self._structured_results_buffer[stream_idx].append(prediction)

def flush(self) -> None:
def flush(self) -> List[Optional[str]]:
stream_idx2file_path = {}
for stream_idx, buffer in self._structured_results_buffer.items():
self._flush_stream_buffer(stream_idx=stream_idx)

def _flush_stream_buffer(self, stream_idx: int) -> None:
file_path = self._flush_stream_buffer(stream_idx=stream_idx)
stream_idx2file_path[stream_idx] = file_path
return [
stream_idx2file_path.get(stream_idx)
for stream_idx in range(self._numbers_of_streams)
]

def _flush_stream_buffer(self, stream_idx: int) -> Optional[str]:
content = self._structured_results_buffer[stream_idx]
if len(content) == 0:
return None
Expand All @@ -114,6 +128,7 @@ def _flush_stream_buffer(self, stream_idx: int) -> None:
else:
dump_jsonl(path=file_path, content=content)
self._structured_results_buffer[stream_idx] = []
return file_path

def __del__(self):
self.flush()
Expand Down Expand Up @@ -182,11 +197,14 @@ def on_prediction(
image = load_image_bgr(value)
stream_sinks[key].write_frame(frame=image)

def release(self) -> None:
for stream_sinks in self._video_sinks.values():
for sink in stream_sinks.values():
def release(self) -> Optional[Dict[str, str]]:
stream_idx2keys_videos: Dict[int, Dict[str, str]] = defaultdict(dict)
for stream_idx, stream_sinks in self._video_sinks.items():
for key, sink in stream_sinks.items():
sink.release()
stream_idx2keys_videos[stream_idx][key] = sink.target_path
self._video_sinks = defaultdict(dict)
return stream_idx2keys_videos.get(0)

def __del__(self):
self.release()
Expand Down
Loading