forked from OmkarShidore/FacialRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7922c03
commit a1ba02f
Showing
3 changed files
with
227 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Thu May 2 19:19:15 2019 | ||
@author: Omkar Shidore | ||
https://www.github.com/OmkarShidore | ||
""" | ||
import cv2 | ||
import os | ||
def createFolder(directory): | ||
try: | ||
if not os.path.exists(directory): | ||
os.makedirs(directory) | ||
except OSError: | ||
print ('Error: Creating directory. ' + directory) | ||
#created folder for saving dataset images of user | ||
createFolder('./dataSet/') | ||
|
||
cam = cv2.VideoCapture(0) | ||
detector=cv2.CascadeClassifier('haarcascade_frontalface_default.xml') | ||
Id=input('Enter your id: ') | ||
UserName=input('Enter Name: ') | ||
sampleNum=0 | ||
while True: | ||
ret, img = cam.read() | ||
ret, img1 = cam.read() | ||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | ||
faces = detector.detectMultiScale(gray, 1.3, 5) | ||
for (x,y,w,h) in faces: | ||
cv2.rectangle(img,(x,y),(x+w,y+h),(0,0,255),2) | ||
|
||
#incrementing sample number | ||
sampleNum=sampleNum+1 | ||
sampleNum1=str(sampleNum) | ||
text=sampleNum | ||
#saving the captured face in the dataset folder | ||
cv2.imwrite("dataSet/User."+Id +'.'+ UserName+'.'+str(sampleNum)+'.'+ ".jpg", gray[y:y+h,x:x+w]) | ||
|
||
cv2.putText(img1,sampleNum1, (70, 150), cv2.FONT_HERSHEY_SIMPLEX, 3,(255,255,255), 3) | ||
cv2.imshow('Scans',img1) | ||
|
||
if cv2.waitKey(1)==27: | ||
break | ||
# break if the sample number is morethan 20 | ||
elif sampleNum>100: | ||
break | ||
cam.release() | ||
cv2.destroyAllWindows() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Thu May 2 20:19:45 2019 | ||
@author: Omkar Shidore | ||
https://www.github.com/OmkarShidore | ||
""" | ||
|
||
import os | ||
import cv2 | ||
import numpy as np | ||
from PIL import Image | ||
print('Module Versions: ') | ||
print('OpenCv: '+cv2.__version__, '\nNumpy: '+np.__version__,'\nPillow>>Image: '+Image.__version__) | ||
|
||
#Creatung directories | ||
def createFolder(directory): | ||
try: | ||
if not os.path.exists(directory): | ||
os.makedirs(directory) | ||
except OSError: | ||
print ('Error: Creating directory. ' + directory) | ||
createFolder('./trainner/') | ||
|
||
recognizer = cv2.face.LBPHFaceRecognizer_create() | ||
detector= cv2.CascadeClassifier("haarcascade_frontalface_default.xml"); | ||
|
||
def getImagesAndLabels(path): | ||
imagePaths=[os.path.join(path,f) for f in os.listdir(path)] | ||
#empty lists for storing Lables and features | ||
faceSamples=[] | ||
Ids=[] | ||
for imagePath in imagePaths: | ||
|
||
pilImage=Image.open(imagePath).convert('L') | ||
imageNp=np.array(pilImage,'uint8') | ||
Id=int(os.path.split(imagePath)[-1].split(".")[1]) | ||
faces=detector.detectMultiScale(imageNp) | ||
for (x,y,w,h) in faces: | ||
faceSamples.append(imageNp[y:y+h,x:x+w]) | ||
Ids.append(Id) | ||
return faceSamples,Ids | ||
faces,Ids = getImagesAndLabels('dataSet') | ||
#training model on dataSet | ||
recognizer.train(faces, np.array(Ids)) | ||
#trainer.yml stored in the folder trainner | ||
recognizer.save('trainner/trainner.yml') | ||
|
||
recognizer = cv2.face.LBPHFaceRecognizer_create() | ||
recognizer.read('trainner/trainner.yml') | ||
cascadePath = "haarcascade_frontalface_default.xml" | ||
faceCascade = cv2.CascadeClassifier(cascadePath); | ||
|
||
|
||
''' | ||
def keyValuePairs(path): | ||
imagePaths=[os.path.join(path,f) for f in os.listdir(path)] | ||
Ids=[] | ||
UserNames=[] | ||
for imagePath in imagePaths: | ||
Id=int(os.path.split(imagePath)[-1].split(".")[1]) | ||
UserName=str(os.path.split(imagePath)[-1].split(".")[2]) | ||
Ids.append(Id) | ||
UserNames.append(UserName) | ||
keyValues = dict(zip(Ids, UserNames)) | ||
return Ids,UserNames,keyValues | ||
Ids,UserNames,keyValues=keyValuePairs('dataSet') | ||
cam = cv2.VideoCapture(0) | ||
font = cv2.FONT_HERSHEY_SIMPLEX | ||
while True: | ||
ret, im =cam.read() | ||
gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) | ||
faces=faceCascade.detectMultiScale(gray, 1.3,5) | ||
for(x,y,w,h) in faces: | ||
cv2.rectangle(im,(x,y),(x+w,y+h),(0,255,0),2) | ||
Id, conf = recognizer.predict(gray[y:y+h,x:x+w]) | ||
if(conf>50): | ||
if Id in keyValues.keys(): | ||
Id1='User Id: '+str(Id) | ||
Name='Name: '+keyValues[Id] | ||
else: | ||
Id="Null" | ||
Name="Unknown" | ||
else: | ||
Id="Unknown" | ||
cv2.putText(im,Id1,(x+w,y),font,0.7,(0,255,0), 2) | ||
cv2.putText(im,Name,(x+w,y+123),font,0.7,(0,255,0), 2) | ||
cv2.imshow('im',im) | ||
if cv2.waitKey(1)==27: | ||
break | ||
cam.release() | ||
cv2.destroyAllWindows() | ||
''' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
Created on Fri May 3 00:37:50 2019 | ||
@author: Omkar Shidore | ||
https://www.github.com/OmkarShidore | ||
""" | ||
import os | ||
import cv2 | ||
|
||
recognizer = cv2.face.LBPHFaceRecognizer_create() | ||
recognizer.read('trainner/trainner.yml') | ||
cascadePath = "haarcascade_frontalface_default.xml" | ||
faceCascade = cv2.CascadeClassifier(cascadePath); | ||
cam = cv2.VideoCapture(0) | ||
font = cv2.FONT_HERSHEY_SIMPLEX | ||
|
||
def keyValuePairs(path): | ||
imagePaths=[os.path.join(path,f) for f in os.listdir(path)] | ||
Ids=[] | ||
UserNames=[] | ||
for imagePath in imagePaths: | ||
Id=int(os.path.split(imagePath)[-1].split(".")[1]) | ||
UserName=str(os.path.split(imagePath)[-1].split(".")[2]) | ||
Ids.append(Id) | ||
UserNames.append(UserName) | ||
keyValues = dict(zip(Ids, UserNames)) | ||
return Ids,UserNames,keyValues | ||
Ids,UserNames,keyValues=keyValuePairs('dataSet') | ||
|
||
cam = cv2.VideoCapture(0) | ||
font = cv2.FONT_HERSHEY_SIMPLEX | ||
while True: | ||
ret, im =cam.read() | ||
gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) | ||
faces=faceCascade.detectMultiScale(gray, 1.3,5) | ||
for(x,y,w,h) in faces: | ||
cv2.rectangle(im,(x,y),(x+w,y+h),(0,255,0),2) | ||
Id, conf = recognizer.predict(gray[y:y+h,x:x+w]) | ||
if(conf>50): | ||
if Id in keyValues.keys(): | ||
Id1= 'User Id : '+str(Id) | ||
Name='User Name: '+keyValues[Id] | ||
else: | ||
Id="Null" | ||
Name="Unknown" | ||
else: | ||
Id="Unknown" | ||
cv2.putText(im,Id1,(x,y+h+20),font,0.7,(0,255,0), 2) | ||
cv2.putText(im,Name,(x,y+h+38),font,0.7,(0,255,0), 2) | ||
cv2.imshow('im',im) | ||
if cv2.waitKey(1)==27: | ||
break | ||
cam.release() | ||
cv2.destroyAllWindows() | ||
|
||
#(124,185,234) | ||
''' | ||
import cv2 | ||
recognizer = cv2.face.LBPHFaceRecognizer_create() | ||
recognizer.read('trainner/trainner.yml') | ||
cascadePath = "haarcascade_frontalface_default.xml" | ||
faceCascade = cv2.CascadeClassifier(cascadePath); | ||
cam = cv2.VideoCapture(0) | ||
font = cv2.FONT_HERSHEY_SIMPLEX | ||
while True: | ||
ret, im =cam.read() | ||
gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) | ||
faces=faceCascade.detectMultiScale(gray, 1.3,5) | ||
for(x,y,w,h) in faces: | ||
cv2.rectangle(im,(x,y),(x+w,y+h),(0,0,255),2) | ||
Id, conf = recognizer.predict(gray[y:y+h,x:x+w]) | ||
if(conf>50): | ||
if(Id==1): | ||
Id="Anirban" | ||
elif(Id==2): | ||
Id="Sam" | ||
else: | ||
Id="Unknown" | ||
cv2.putText(im,Id,(x,y+h),font,2,(0,255,0), 2) | ||
cv2.imshow('im',im) | ||
if cv2.waitKey(1)==27: | ||
break | ||
cam.release() | ||
cv2.destroyAllWindows() | ||
''' |