Skip to content

reidlw/kubo

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

kubo

the oldest IPFS implementation, previously known as "go-ipfs"

kubo, an IPFS node in Go

GoDoc CircleCI

What is Kubo?

Kubo (go-ipfs) the earliest and most widely used implementation of IPFS.

It includes:

  • an IPFS daemon server
  • extensive command line tooling
  • an HTTP Gateway (/ipfs/, /ipns/) for serving content to HTTP browsers
  • an HTTP RPC API (/api/v0) for controlling the daemon node

Note: other implementations exist.

What is IPFS?

IPFS is a global, versioned, peer-to-peer filesystem. It combines good ideas from previous systems such as Git, BitTorrent, Kademlia, SFS, and the Web. It is like a single BitTorrent swarm, exchanging git objects. IPFS provides an interface as simple as the HTTP web, but with permanence built-in. You can also mount the world at /ipfs.

For more info see: https://docs.ipfs.io/introduction/overview/

Before opening an issue, consider using one of the following locations to ensure you are opening your thread in the right place:

YouTube Channel Subscribers Follow @IPFS on Twitter

Next milestones

Milestones on GitHub

Table of Contents

Security Issues

Please follow SECURITY.md.

Install

The canonical download instructions for IPFS are over at: https://docs.ipfs.io/guides/guides/install/. It is highly recommended you follow those instructions if you are not interested in working on IPFS development.

System Requirements

IPFS can run on most Linux, macOS, and Windows systems. We recommend running it on a machine with at least 2 GB of RAM and 2 CPU cores (kubo is highly parallel). On systems with less memory, it may not be completely stable.

If your system is resource-constrained, we recommend:

  1. Installing OpenSSL and rebuilding kubo manually with make build GOTAGS=openssl. See the download and compile section for more information on compiling kubo.
  2. Initializing your daemon with ipfs init --profile=lowpower

Docker

Docker Image Version (legacy name)

More info on how to run kubo (go-ipfs) inside Docker can be found here.

Native Linux package managers

Arch Linux

kubo via Community Repo

# pacman -S kubo

kubo-git via AUR

With the purely functional package manager Nix you can install kubo (go-ipfs) like this:

$ nix-env -i ipfs

You can also install the Package by using its attribute name, which is also ipfs.

Solus

In solus, kubo (go-ipfs) is available in the main repository as go-ipfs.

$ sudo eopkg install go-ipfs

You can also install it through the Solus software center.

openSUSE

Community Package for go-ipfs

Other package managers

Guix

GNU's functional package manager, Guix, also provides a go-ipfs package:

$ guix package -i go-ipfs

Snap

With snap, in any of the supported Linux distributions:

$ sudo snap install ipfs

The snap sets IPFS_PATH to SNAP_USER_COMMON, which is usually ~/snap/ipfs/common. If you want to use ~/.ipfs instead, you can bind-mount it to ~/snap/ipfs/common like this:

$ sudo mount --bind ~/.ipfs ~/snap/ipfs/common

If you want something more sophisticated to escape the snap confinement, we recommend using a different method to install kubo so that it is not subject to snap confinement.

macOS package managers

MacPorts

The package ipfs currently points to kubo (go-ipfs) and is being maintained.

$ sudo port install ipfs

In macOS you can use the purely functional package manager Nix:

$ nix-env -i ipfs

You can also install the Package by using its attribute name, which is also ipfs.

Homebrew

A Homebrew formula ipfs is maintained too.

$ brew install --formula ipfs

Windows package managers

Chocolatey

Chocolatey Version

PS> choco install ipfs

Scoop

Scoop provides kubo as go-ipfs in its 'extras' bucket.

PS> scoop bucket add extras
PS> scoop install go-ipfs

Install prebuilt binaries

dist.ipfs.io Downloads

From there:

  • Click the blue "Download kubo" on the right side of the page.
  • Open/extract the archive.
  • Move kubo (ipfs) to your path (install.sh can do it for you).

If you are unable to access dist.ipfs.io, you can also download kubo (go-ipfs) from:

Build from Source

GitHub go.mod Go version

kubo's build system requires Go and some standard POSIX build tools:

  • GNU make
  • Git
  • GCC (or some other go compatible C Compiler) (optional)

To build without GCC, build with CGO_ENABLED=0 (e.g., make build CGO_ENABLED=0).

Install Go

GitHub go.mod Go version

If you need to update: Download latest version of Go.

You'll need to add Go's bin directories to your $PATH environment variable e.g., by adding these lines to your /etc/profile (for a system-wide installation) or $HOME/.profile:

export PATH=$PATH:/usr/local/go/bin
export PATH=$PATH:$GOPATH/bin

(If you run into trouble, see the Go install instructions).

Download and Compile IPFS

$ git clone https://github.com/ipfs/kubo.git

$ cd kubo
$ make install

Alternatively, you can run make build to build the go-ipfs binary (storing it in cmd/ipfs/ipfs) without installing it.

NOTE: If you get an error along the lines of "fatal error: stdlib.h: No such file or directory", you're missing a C compiler. Either re-run make with CGO_ENABLED=0 or install GCC.

Cross Compiling

Compiling for a different platform is as simple as running:

make build GOOS=myTargetOS GOARCH=myTargetArchitecture
OpenSSL

To build go-ipfs with OpenSSL support, append GOTAGS=openssl to your make invocation. Building with OpenSSL should significantly reduce the background CPU usage on nodes that frequently make or receive new connections.

Note: OpenSSL requires CGO support and, by default, CGO is disabled when cross-compiling. To cross-compile with OpenSSL support, you must:

  1. Install a compiler toolchain for the target platform.
  2. Set the CGO_ENABLED=1 environment variable.

Troubleshooting

  • Separate instructions are available for building on Windows.
  • git is required in order for go get to fetch all dependencies.
  • Package managers often contain out-of-date golang packages. Ensure that go version reports at least 1.10. See above for how to install go.
  • If you are interested in development, please install the development dependencies as well.
  • Shell command completions can be generated with one of the ipfs commands completion subcommands. Read docs/command-completion.md to learn more.
  • See the misc folder for how to connect IPFS to systemd or whatever init system your distro uses.

Updating

Using ipfs-update

IPFS has an updating tool that can be accessed through ipfs update. The tool is not installed alongside IPFS in order to keep that logic independent of the main codebase. To install ipfs update, download it here.

Downloading builds using IPFS

List the available versions of kubo (go-ipfs) implementation:

$ ipfs cat /ipns/dist.ipfs.io/go-ipfs/versions

Then, to view available builds for a version from the previous command ($VERSION):

$ ipfs ls /ipns/dist.ipfs.io/go-ipfs/$VERSION

To download a given build of a version:

$ ipfs get /ipns/dist.ipfs.io/go-ipfs/$VERSION/go-ipfs_$VERSION_darwin-386.tar.gz # darwin 32-bit build
$ ipfs get /ipns/dist.ipfs.io/go-ipfs/$VERSION/go-ipfs_$VERSION_darwin-amd64.tar.gz # darwin 64-bit build
$ ipfs get /ipns/dist.ipfs.io/go-ipfs/$VERSION/go-ipfs_$VERSION_freebsd-amd64.tar.gz # freebsd 64-bit build
$ ipfs get /ipns/dist.ipfs.io/go-ipfs/$VERSION/go-ipfs_$VERSION_linux-386.tar.gz # linux 32-bit build
$ ipfs get /ipns/dist.ipfs.io/go-ipfs/$VERSION/go-ipfs_$VERSION_linux-amd64.tar.gz # linux 64-bit build
$ ipfs get /ipns/dist.ipfs.io/go-ipfs/$VERSION/go-ipfs_$VERSION_linux-arm.tar.gz # linux arm build
$ ipfs get /ipns/dist.ipfs.io/go-ipfs/$VERSION/go-ipfs_$VERSION_windows-amd64.zip # windows 64-bit build

Getting Started

Usage

docs: Command-line quick start docs: Command-line reference

To start using IPFS, you must first initialize IPFS's config files on your system, this is done with ipfs init. See ipfs init --help for information on the optional arguments it takes. After initialization is complete, you can use ipfs mount, ipfs add and any of the other commands to explore!

Some things to try

Basic proof of 'ipfs working' locally:

echo "hello world" > hello
ipfs add hello
# This should output a hash string that looks something like:
# QmT78zSuBmuS4z925WZfrqQ1qHaJ56DQaTfyMUF7F8ff5o
ipfs cat <that hash>

Troubleshooting

If you have previously installed IPFS before and you are running into problems getting a newer version to work, try deleting (or backing up somewhere else) your IPFS config directory (~/.ipfs by default) and rerunning ipfs init. This will reinitialize the config file to its defaults and clear out the local datastore of any bad entries.

Please direct general questions and help requests to our forum or our IRC channel (freenode #ipfs).

If you believe you've found a bug, check the issues list and, if you don't see your problem there, either come talk to us on Matrix chat, or file an issue of your own!

Packages

See IPFS in GO documentation.

Development

Some places to get you started on the codebase:

Map of Implemented Subsystems

WIP: This is a high-level architecture diagram of the various sub-systems of this specific implementation. To be updated with how they interact. Anyone who has suggestions is welcome to comment here on how we can improve this!

CLI, HTTP-API, Architecture Diagram

Origin

Description: Dotted means "likely going away". The "Legacy" parts are thin wrappers around some commands to translate between the new system and the old system. The grayed-out parts on the "daemon" diagram are there to show that the code is all the same, it's just that we turn some pieces on and some pieces off depending on whether we're running on the client or the server.

Testing

make test

Development Dependencies

If you make changes to the protocol buffers, you will need to install the protoc compiler.

Developer Notes

Find more documentation for developers on docs

Maintainer Info

Contributing

We ❤️ all our contributors; this project wouldn’t be what it is without you! If you want to help out, please see CONTRIBUTING.md.

This repository falls under the IPFS Code of Conduct.

Please reach out to us in one chat rooms.

License

This project is dual-licensed under Apache 2.0 and MIT terms:

About

IPFS implementation in Go

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 64.0%
  • Shell 29.9%
  • HTML 4.8%
  • Makefile 1.0%
  • Dockerfile 0.2%
  • CSS 0.1%