- Data processing, augmentation and labeling routine
- auto-tuner
- code used for generating clusters of the charge induced current offset
│
├── README.md <- The top-level README for developers using this project
│
├── environment.yml <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
│
├── data <- Folder where all data is located (not on GitHub due to large size)
│ ├── fine <- Folder for fine data
│ ├── coarse <- Folder for coarse data
│
├── report <- Report
│
│
├── src <- Source code of this project.
│ ├── __init__.py <- Makes src a Python module
│ ├── clusterer <- Scripts to download or generate data
│ │ └── make_clusters.py
│ │
│ ├── data_generation <- Scripts to turn raw data into features for modeling
│ │ └── augmenter.py <- class for augmentation
│ │ └── labeler.py <- class for automated labeling of fine frames
│ │ └── marker.py <- class for marking of charge transition lines
│ │ └── occupation_labeler.py <- class for automated labeling of coarse frames
│ │ └── measurement_series.py <- functions for repeated measurements
│ │
│ │
│ └── utils <- Scripts to create exploratory and results oriented visualizations / functions to evaluate the models
│ └── exploration.py <- model exploration
│ └── evaluation.py <- model evaluation
│ └── funcs.py <- general functions, preprocessing of data
│ └── measurement_funcs.py <- functions used to measure with Labber
│ └── visualization.py <- functions for visualization
In order to run the code, the following python environment needs to be installed.
conda env create -f environment.yml -n env_auto_tuner
conda env update -f environment.yml -n env_auto_tuner
activate env_auto_tuner
conda clean -a -y
conda env remove -n env_auto_tuner