Skip to content

qdrant/qdrant-spark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Qdrant-Spark Connector

Apache Spark is a distributed computing framework designed for big data processing and analytics. This connector enables Qdrant to be a storage destination in Spark.

Installation

To integrate the connector into your Spark environment, get the JAR file from one of the sources listed below.

Important

Ensure your system is running Java 8.

GitHub Releases

The packaged jar file can be found here.

Building from source

To build the jar from source, you need JDK@8 and Maven installed. Once the requirements have been satisfied, run the following command in the project root.

mvn package

The JAR file will be written into the target directory by default.

Maven Central

Find the project on Maven Central here.

Usage

Creating a Spark session (Single-node) with Qdrant support

from pyspark.sql import SparkSession

spark = SparkSession.builder.config(
        "spark.jars",
        "spark-VERSION.jar",  # Specify the downloaded JAR file
    )
    .master("local[*]")
    .appName("qdrant")
    .getOrCreate()

Loading data

Important

Before loading the data using this connector, a collection has to be created in advance with the appropriate vector dimensions and configurations.

The connector supports ingesting multiple named/unnamed, dense/sparse vectors.

Click each to expand.

Unnamed/Default vector
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", <QDRANT_GRPC_URL>)
   .option("collection_name", <QDRANT_COLLECTION_NAME>)
   .option("embedding_field", <EMBEDDING_FIELD_NAME>)  # Expected to be a field of type ArrayType(FloatType)
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Named vector
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", <QDRANT_GRPC_URL>)
   .option("collection_name", <QDRANT_COLLECTION_NAME>)
   .option("embedding_field", <EMBEDDING_FIELD_NAME>)  # Expected to be a field of type ArrayType(FloatType)
   .option("vector_name", <VECTOR_NAME>)
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()

NOTE

The embedding_field and vector_name options are maintained for backward compatibility. It is recommended to use vector_fields and vector_names for named vectors as shown below.

Multiple named vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("vector_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("vector_names", "<VECTOR_NAME>,<ANOTHER_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Sparse vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("sparse_vector_value_fields", "<COLUMN_NAME>")
   .option("sparse_vector_index_fields", "<COLUMN_NAME>")
   .option("sparse_vector_names", "<SPARSE_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Multiple sparse vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("sparse_vector_value_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_index_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_names", "<SPARSE_VECTOR_NAME>,<ANOTHER_SPARSE_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Combination of named dense and sparse vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("vector_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("vector_names", "<VECTOR_NAME>,<ANOTHER_VECTOR_NAME>")
   .option("sparse_vector_value_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_index_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("sparse_vector_names", "<SPARSE_VECTOR_NAME>,<ANOTHER_SPARSE_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Multi-vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("multi_vector_fields", "<COLUMN_NAME>")
   .option("multi_vector_names", "<MULTI_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
Multiple Multi-vectors
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("multi_vector_fields", "<COLUMN_NAME>,<ANOTHER_COLUMN_NAME>")
   .option("multi_vector_names", "<MULTI_VECTOR_NAME>,<ANOTHER_MULTI_VECTOR_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()
No vectors - Entire dataframe is stored as payload
  <pyspark.sql.DataFrame>
   .write
   .format("io.qdrant.spark.Qdrant")
   .option("qdrant_url", "<QDRANT_GRPC_URL>")
   .option("collection_name", "<QDRANT_COLLECTION_NAME>")
   .option("schema", <pyspark.sql.DataFrame>.schema.json())
   .mode("append")
   .save()

Databricks

Tip

Check out our example of using the Spark connector with Databricks.

You can use the connector as a library in Databricks to ingest data into Qdrant.

  • Go to the Libraries section in your cluster dashboard.
  • Select Install New to open the library installation modal.
  • Search for io.qdrant:spark:VERSION in the Maven packages and click Install.
Screenshot 2024-04-28 at 11 34 17 AM

Datatype support

The appropriate Spark data types are mapped to the Qdrant payload based on the provided schema.

Options and Spark types

Option Description Column DataType Required
qdrant_url gRPC URL of the Qdrant instance. Eg: http://localhost:6334 -
collection_name Name of the collection to write data into -
schema JSON string of the dataframe schema -
embedding_field Name of the column holding the embeddings (Deprecated - Use vector_fields instead) ArrayType(FloatType)
id_field Name of the column holding the point IDs. Default: Random UUID StringType or IntegerType
batch_size Max size of the upload batch. Default: 64 -
retries Number of upload retries. Default: 3 -
api_key Qdrant API key for authentication -
vector_name Name of the vector in the collection. -
vector_fields Comma-separated names of columns holding the vectors. ArrayType(FloatType)
vector_names Comma-separated names of vectors in the collection. -
sparse_vector_index_fields Comma-separated names of columns holding the sparse vector indices. ArrayType(IntegerType)
sparse_vector_value_fields Comma-separated names of columns holding the sparse vector values. ArrayType(FloatType)
sparse_vector_names Comma-separated names of the sparse vectors in the collection. -
multi_vector_fields Comma-separated names of columns holding the multi-vector values. ArrayType(ArrayType(FloatType))
multi_vector_names Comma-separated names of the multi-vectors in the collection. -
shard_key_selector Comma-separated names of custom shard keys to use during upsert. -
wait Wait for each batch upsert to complete. true or false. Defaults to true. -

LICENSE

Apache 2.0 © 2024