Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace to_dict to permute in QEBC #1876

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 18 additions & 27 deletions torchrec/quant/embedding_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -320,6 +320,8 @@ def __init__(
self._key_to_tables: Dict[
Tuple[PoolingType, DataType], List[EmbeddingBagConfig]
] = defaultdict(list)
self._feature_names: List[str] = []
self._feature_splits: List[int] = []
self._length_per_key: List[int] = []
# Registering in a List instead of ModuleList because we want don't want them to be auto-registered.
# Their states will be modified via self.embedding_bags
Expand Down Expand Up @@ -389,6 +391,11 @@ def __init__(
if weight_lists is None:
emb_module.initialize_weights()
self._emb_modules.append(emb_module)
for table in emb_configs:
self._feature_names.extend(table.feature_names)
self._feature_splits.append(
sum(table.num_features() for table in emb_configs)
)

ordered_tables = list(itertools.chain(*self._key_to_tables.values()))
self._embedding_names: List[str] = list(
Expand Down Expand Up @@ -462,47 +469,31 @@ def forward(
KeyedTensor
"""

feature_dict = self._kjt_to_jt_dict(features)
embeddings = []
kjt_keys = features.keys()
kjt_permute_order = [kjt_keys.index(k) for k in self._feature_names]
kjt_permute = features.permute(kjt_permute_order)
kjts_per_key = kjt_permute.split(self._feature_splits)

# TODO ideally we can accept KJTs with any feature order. However, this will require an order check + permute, which will break torch.script.
# Once torchsccript is no longer a requirement, we should revisit this.

for emb_op, (_key, tables) in zip(
self._emb_modules, self._key_to_tables.items()
for i, (emb_op, _) in enumerate(
zip(self._emb_modules, self._key_to_tables.keys())
):
indices = []
lengths = []
offsets = []
weights = []

for table in tables:
for feature in table.feature_names:
f = feature_dict[feature]
indices.append(f.values())
lengths.append(f.lengths())
if self._is_weighted:
weights.append(f.weights())

indices = torch.cat(indices)
lengths = torch.cat(lengths)

offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths)
if self._is_weighted:
weights = torch.cat(weights)
f = kjts_per_key[i]
indices = f.values()
offsets = f.offsets()

embeddings.append(
# Syntax for FX to generate call_module instead of call_function to keep TBE copied unchanged to fx.GraphModule, can be done only for registered module
emb_op(
indices=indices,
offsets=offsets,
per_sample_weights=weights if self._is_weighted else None,
per_sample_weights=f.weights() if self._is_weighted else None,
)
if self.register_tbes
else emb_op.forward(
indices=indices,
offsets=offsets,
per_sample_weights=weights if self._is_weighted else None,
per_sample_weights=f.weights() if self._is_weighted else None,
)
)

Expand Down
5 changes: 3 additions & 2 deletions torchrec/quant/tests/test_embedding_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -457,14 +457,15 @@ def test_trace_and_script(self) -> None:
self.assertTrue(
len(non_placeholder_nodes) > 0, "Graph must have non-placeholder nodes"
)

self.assertEqual(
non_placeholder_nodes[0].op,
"call_module",
"call_method",
f"First non-placeholder node must be call_method, got {non_placeholder_nodes[0].op} instead",
)
self.assertEqual(
non_placeholder_nodes[0].name,
"_kjt_to_jt_dict",
"keys",
f"First non-placeholder node must be _kjt_to_jt_dict, got {non_placeholder_nodes[0].name} instead",
)

Expand Down
Loading