Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Performance & runtime improvements to info-theoretic acquisition functions (0/N) - Restructuring of sampling methods #2753

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
180 changes: 24 additions & 156 deletions botorch/optim/initializers.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@

import warnings
from collections.abc import Callable
from math import ceil
from typing import Optional, Union

import torch
Expand All @@ -43,14 +42,15 @@
from botorch.optim.utils import fix_features, get_X_baseline
from botorch.utils.multi_objective.pareto import is_non_dominated
from botorch.utils.sampling import (
batched_multinomial,
boltzmann_sample,
draw_sobol_samples,
get_polytope_samples,
manual_seed,
sample_perturbed_subset_dims,
sample_truncated_normal_perturbations,
)
from botorch.utils.transforms import normalize, standardize, unnormalize
from botorch.utils.transforms import unnormalize
from torch import Tensor
from torch.distributions import Normal
from torch.quasirandom import SobolEngine

TGenInitialConditions = Callable[
Expand Down Expand Up @@ -578,10 +578,12 @@ def gen_one_shot_kg_initial_conditions(

# sampling from the optimizers
n_value = int((1 - frac_random) * (q_aug - q)) # number of non-random ICs
eta = options.get("eta", 2.0)
weights = torch.exp(eta * standardize(fantasy_vals))
idx = torch.multinomial(weights, num_restarts * n_value, replacement=True)

idx = boltzmann_sample(
function_values=fantasy_vals,
num_samples=num_restarts * n_value,
eta=options.get("eta", 2.0),
replacement=True,
)
# set the respective initial conditions to the sampled optimizers
ics[..., -n_value:, :] = fantasy_cands[idx, 0].view(num_restarts, n_value, -1)
return ics
Expand Down Expand Up @@ -699,14 +701,14 @@ def gen_one_shot_hvkg_initial_conditions(
sequential=False,
)
# sampling from the optimizers
eta = options.get("eta", 2.0)
if num_optim_restarts > 0:
probs = torch.nn.functional.softmax(eta * standardize(fantasy_vals), dim=0)
idx = torch.multinomial(
probs,
num_optim_restarts * acq_function.num_fantasies,
idx = boltzmann_sample(
function_values=fantasy_vals,
num_samples=num_optim_restarts * acq_function.num_fantasies,
eta=options.get("eta", 2.0),
replacement=True,
)

optim_ics = fantasy_cands[idx]
if is_mf_hvkg:
# add fixed features
Expand Down Expand Up @@ -885,11 +887,10 @@ def gen_value_function_initial_conditions(
# sampling from the optimizers
n_value = int((1 - frac_random) * raw_samples) # number of non-random ICs
if n_value > 0:
eta = options.get("eta", 2.0)
weights = torch.exp(eta * standardize(fantasy_vals))
idx = batched_multinomial(
weights=weights.expand(*batch_shape, -1),
idx = boltzmann_sample(
function_values=fantasy_vals.expand(*batch_shape, -1),
num_samples=n_value,
eta=options.get("eta", 2.0),
replacement=True,
).permute(-1, *range(len(batch_shape)))
resampled = fantasy_cands[idx]
Expand Down Expand Up @@ -979,18 +980,12 @@ def initialize_q_batch(
return X[idcs], acq_vals[idcs]

max_val, max_idx = torch.max(acq_vals, dim=0)
Z = (acq_vals - acq_vals.mean(dim=0)) / Ystd
etaZ = eta * Z
weights = torch.exp(etaZ)
while torch.isinf(weights).any():
etaZ *= 0.5
weights = torch.exp(etaZ)
if batch_shape == torch.Size():
idcs = torch.multinomial(weights, n)
else:
idcs = batched_multinomial(
weights=weights.permute(*range(1, len(batch_shape) + 1), 0), num_samples=n
).permute(-1, *range(len(batch_shape)))
idcs = boltzmann_sample(
acq_vals.permute(*range(1, len(batch_shape) + 1), 0),
num_samples=n,
eta=eta,
).permute(-1, *range(len(batch_shape)))

# make sure we get the maximum
if max_idx not in idcs:
idcs[-1] = max_idx
Expand Down Expand Up @@ -1239,133 +1234,6 @@ def sample_points_around_best(
return perturbed_X


def sample_truncated_normal_perturbations(
X: Tensor,
n_discrete_points: int,
sigma: float,
bounds: Tensor,
qmc: bool = True,
) -> Tensor:
r"""Sample points around `X`.

Sample perturbed points around `X` such that the added perturbations
are sampled from N(0, sigma^2 I) and truncated to be within [0,1]^d.

Args:
X: A `n x d`-dim tensor starting points.
n_discrete_points: The number of points to sample.
sigma: The standard deviation of the additive gaussian noise for
perturbing the points.
bounds: A `2 x d`-dim tensor containing the bounds.
qmc: A boolean indicating whether to use qmc.

Returns:
A `n_discrete_points x d`-dim tensor containing the sampled points.
"""
X = normalize(X, bounds=bounds)
d = X.shape[1]
# sample points from N(X_center, sigma^2 I), truncated to be within
# [0, 1]^d.
if X.shape[0] > 1:
rand_indices = torch.randint(X.shape[0], (n_discrete_points,), device=X.device)
X = X[rand_indices]
if qmc:
std_bounds = torch.zeros(2, d, dtype=X.dtype, device=X.device)
std_bounds[1] = 1
u = draw_sobol_samples(bounds=std_bounds, n=n_discrete_points, q=1).squeeze(1)
else:
u = torch.rand((n_discrete_points, d), dtype=X.dtype, device=X.device)
# compute bounds to sample from
a = -X
b = 1 - X
# compute z-score of bounds
alpha = a / sigma
beta = b / sigma
normal = Normal(0, 1)
cdf_alpha = normal.cdf(alpha)
# use inverse transform
perturbation = normal.icdf(cdf_alpha + u * (normal.cdf(beta) - cdf_alpha)) * sigma
# add perturbation and clip points that are still outside
perturbed_X = (X + perturbation).clamp(0.0, 1.0)
return unnormalize(perturbed_X, bounds=bounds)


def sample_perturbed_subset_dims(
X: Tensor,
bounds: Tensor,
n_discrete_points: int,
sigma: float = 1e-1,
qmc: bool = True,
prob_perturb: float | None = None,
) -> Tensor:
r"""Sample around `X` by perturbing a subset of the dimensions.

By default, dimensions are perturbed with probability equal to
`min(20 / d, 1)`. As shown in [Regis]_, perturbing a small number
of dimensions can be beneificial. The perturbations are sampled
from N(0, sigma^2 I) and truncated to be within [0,1]^d.

Args:
X: A `n x d`-dim tensor starting points. `X`
must be normalized to be within `[0, 1]^d`.
bounds: The bounds to sample perturbed values from
n_discrete_points: The number of points to sample.
sigma: The standard deviation of the additive gaussian noise for
perturbing the points.
qmc: A boolean indicating whether to use qmc.
prob_perturb: The probability of perturbing each dimension. If omitted,
defaults to `min(20 / d, 1)`.

Returns:
A `n_discrete_points x d`-dim tensor containing the sampled points.

"""
if bounds.ndim != 2:
raise BotorchTensorDimensionError("bounds must be a `2 x d`-dim tensor.")
elif X.ndim != 2:
raise BotorchTensorDimensionError("X must be a `n x d`-dim tensor.")
d = bounds.shape[-1]
if prob_perturb is None:
# Only perturb a subset of the features
prob_perturb = min(20.0 / d, 1.0)

if X.shape[0] == 1:
X_cand = X.repeat(n_discrete_points, 1)
else:
rand_indices = torch.randint(X.shape[0], (n_discrete_points,), device=X.device)
X_cand = X[rand_indices]
pert = sample_truncated_normal_perturbations(
X=X_cand,
n_discrete_points=n_discrete_points,
sigma=sigma,
bounds=bounds,
qmc=qmc,
)

# find cases where we are not perturbing any dimensions
mask = (
torch.rand(
n_discrete_points,
d,
dtype=bounds.dtype,
device=bounds.device,
)
<= prob_perturb
)
ind = (~mask).all(dim=-1).nonzero()
# perturb `n_perturb` of the dimensions
n_perturb = ceil(d * prob_perturb)
perturb_mask = torch.zeros(d, dtype=mask.dtype, device=mask.device)
perturb_mask[:n_perturb].fill_(1)
# TODO: use batched `torch.randperm` when available:
# https://github.com/pytorch/pytorch/issues/42502
for idx in ind:
mask[idx] = perturb_mask[torch.randperm(d, device=bounds.device)]
# Create candidate points
X_cand[mask] = pert[mask]
return X_cand


def is_nonnegative(acq_function: AcquisitionFunction) -> bool:
r"""Determine whether a given acquisition function is non-negative.

Expand Down
Loading