Skip to content

Commit

Permalink
Some fixes in 8.2.1
Browse files Browse the repository at this point in the history
  • Loading branch information
papamarkou committed Aug 5, 2024
1 parent f364baf commit b366b31
Showing 1 changed file with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions rmd/08-hasse-graph-interpretation.rmd
Original file line number Diff line number Diff line change
Expand Up @@ -133,7 +133,7 @@ Analogous to their graph counterparts, higher-order deep learning models, and CC
Motivated by Proposition \@ref(prp:structure), which characterizes the structure of a CC, this section introduces permutation-equivariant CCNNs. We first define the action of the permutation group on the space of cochain maps.

```{definition, perm, name="Permutation action on space of cochain maps"}
Let $\mathcal{X}$ be a CC. Define $\mbox{Sym}(\mathcal{X}) = \prod_{i=0}^{\dim(\mathcal{X})} \mbox{Sym}(\mathcal{X}^k)$ the group of rank-preserving permutations of the cells of $\mathcal{X}$. Let $\mathbf{G}=\{G_k\}$ be a sequence of cochain maps defined on $\mathcal{X}$ with $G_k \colon \mathcal{C}^{i_k}\to \mathcal{C}^{j_k}$, $0\leq i_k,j_k\leq \dim(\mathcal{X})$. Let $\mathcal{P}=(\mathbf{P}_i)_{i=0}^{\dim(\mathcal{X})} \in \mbox{Sym}(\mathcal{X})$. Define the \textbf{permutation (group) action} of $\mathcal{P}$ on $\mathbf{G}$ by $\mathcal{P}(\mathbf{G}) = (\mathbf{P}_{j_k} G_{k} \mathbf{P}_{i_k}^T )_{i=0}^{\dim(\mathcal{X})}$.
Let $\mathcal{X}$ be a CC. Define $\mbox{Sym}(\mathcal{X}) = \prod_{i=0}^{\dim(\mathcal{X})} \mbox{Sym}(\mathcal{X}^k)$ the group of rank-preserving permutations of the cells of $\mathcal{X}$. Let $\mathbf{G}=\{G_k\}$ be a sequence of cochain maps defined on $\mathcal{X}$ with $G_k \colon \mathcal{C}^{i_k}\to \mathcal{C}^{j_k}$, $0\leq i_k,j_k\leq \dim(\mathcal{X})$. Let $\mathcal{P}=(\mathbf{P}_i)_{i=0}^{\dim(\mathcal{X})} \in \mbox{Sym}(\mathcal{X})$. Define the *permutation (group) action* of $\mathcal{P}$ on $\mathbf{G}$ by $\mathcal{P}(\mathbf{G}) = (\mathbf{P}_{j_k} G_{k} \mathbf{P}_{i_k}^T )_{i=0}^{\dim(\mathcal{X})}$.
```

We introduce permutation-equivariant CCNNs in Definition \@ref(def:eqv), using the group action given in Definition \@ref(def:perm). Definition \@ref(def:eqv) generalizes the relevant definitions in [@roddenberry2021principled; @schaub2021signal]. We refer the reader to [@joglwe2022; @velivckovic2022message] for a related discussion. Hereafter, we use $\mbox{Proj}_k \colon \mathcal{C}^1\times \cdots \times \mathcal{C}^m \to \mathcal{C}^k$ to denote the standard $k$-th projection for $1\leq k \leq m$, defined via $\mbox{Proj}_k ( \mathbf{H}_{1},\ldots, \mathbf{H}_{k},\ldots,\mathbf{H}_{m})= \mathbf{H}_{k}$.
Expand All @@ -143,7 +143,7 @@ Let $\mathcal{X}$ be a CC and let $\mathbf{G}= \{G_k\}$ be a finite sequence of
\begin{equation*}
\mbox{CCNN}_{\mathbf{G};\mathbf{W}}\colon \mathcal{C}^{i_1}\times\mathcal{C}^{i_2}\times \cdots \times \mathcal{C}^{i_m} \to \mathcal{C}^{j_1}\times\mathcal{C}^{j_2}\times \cdots \times \mathcal{C}^{j_n}
\end{equation*}
is called a \textbf{permutation-equivariant CCNN} if
is called a *permutation-equivariant CCNN* if
\begin{equation}
\mbox{Proj}_k \circ \mbox{CCNN}_{\mathbf{G};\mathbf{W}}(\mathbf{H}_{i_1},\ldots ,\mathbf{H}_{i_m})=
\mathbf{P}_{k} \mbox{Proj}_k \circ
Expand Down Expand Up @@ -187,7 +187,7 @@ Let $\mbox{CCNN}_{\mathbf{G};\mathbf{W}}\colon \mathcal{C}^{i_1}\times\mathcal{C
```

```{proof}
If a CCNN is of height one, then by Proposition \@ref(prp:simple), $\mbox{Proj}_k \circ \mbox{CCNN}_{\mathbf{G};\mathbf{W}}(\mathbf{H}_{i_1},\ldots ,\mathbf{H}_{i_m})= \mathcal{M}_{\mathbf{G}_{j_k};\mathbf{W}_k}$. Hence, the result follows from the definition of merge node permutation equivariance (Definition \@ref(node_equivariance}) and the definition of CCNN permutation equivariance (Definition \@ref(def:eqv)).
If a CCNN is of height one, then by Proposition \@ref(prp:simple), $\mbox{Proj}_k \circ \mbox{CCNN}_{\mathbf{G};\mathbf{W}}(\mathbf{H}_{i_1},\ldots ,\mathbf{H}_{i_m})= \mathcal{M}_{\mathbf{G}_{j_k};\mathbf{W}_k}$. Hence, the result follows from the definition of merge node permutation equivariance (Definition \@ref(def:node-equivariance)) and the definition of CCNN permutation equivariance (Definition \@ref(def:eqv)).
```

Finally, Theorem \@ref(thm:height2) characterizes the permutation equivariance of CCNNs in terms of merge nodes. From this point of view, Theorem \@ref(thm:height2) provides a practical version of permutation equivariance for CCNNs.
Expand Down

0 comments on commit b366b31

Please sign in to comment.