Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

apply_optimizer bug for terms in sakka_bilmes_product #537

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions funsor/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,11 @@ def unfold_contraction_generic_tuple(red_op, bin_op, reduced_vars, terms):
)
return Contraction(red_op, v.bin_op, reduced_vars, *new_terms)

if red_op in (v.red_op, ops.null) and (v.red_op, bin_op) in DISTRIBUTIVE_OPS:
if (
red_op in (v.red_op, ops.null)
and (v.red_op, bin_op) in DISTRIBUTIVE_OPS
and v.reduced_vars.isdisjoint(reduced_vars)
):
new_terms = (
terms[:i]
+ (Contraction(v.red_op, v.bin_op, frozenset(), *v.terms),)
Expand All @@ -56,7 +60,11 @@ def unfold_contraction_generic_tuple(red_op, bin_op, reduced_vars, terms):
red_op, reduced_vars
)

if v.red_op in (red_op, ops.null) and bin_op in (v.bin_op, ops.null):
if (
v.red_op in (red_op, ops.null)
and bin_op in (v.bin_op, ops.null)
and v.reduced_vars.isdisjoint(reduced_vars)
):
red_op = v.red_op if red_op is ops.null else red_op
bin_op = v.bin_op if bin_op is ops.null else bin_op
new_terms = terms[:i] + v.terms + terms[i + 1 :]
Expand Down
183 changes: 183 additions & 0 deletions test/test_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
import pytest

import funsor
from funsor.cnf import Contraction
from funsor.domains import Bint
from funsor.einsum import (
einsum,
Expand Down Expand Up @@ -160,3 +161,185 @@ def test_optimized_plated_einsum(equation, plates, backend):
for i, output_dim in enumerate(output):
assert output_dim in actual.inputs
assert actual.inputs[output_dim].dtype == sizes[output_dim]


def test_intersecting_contractions():
import torch

with funsor.terms.lazy:
term = Contraction(
funsor.terms.ops.logaddexp,
funsor.terms.ops.add,
frozenset(
{
Variable("_drop_0__BOUND_10", Bint[3]),
Variable("_drop_1__BOUND_11", Bint[2]),
}
), # noqa
(
Contraction(
funsor.terms.ops.logaddexp,
funsor.terms.ops.add,
frozenset(
{
Variable("_drop_0__BOUND_8", Bint[3]),
Variable("_drop_1__BOUND_9", Bint[2]),
}
), # noqa
(
Tensor(
torch.tensor(
[
[
[-1.1258398294448853, -1.152360200881958],
[-0.2505785822868347, -0.4338788092136383],
],
[
[0.8487103581428528, 0.6920091509819031],
[-0.31601276993751526, -2.1152193546295166],
],
[
[0.32227492332458496, -1.2633347511291504],
[0.34998318552970886, 0.30813392996788025],
],
],
dtype=torch.float32,
), # noqa
(
(
"_drop_0__BOUND_8",
Bint[3],
),
(
"_drop_1__BOUND_9",
Bint[2],
),
(
"_PREV_b",
Bint[2],
),
),
"real",
),
Tensor(
torch.tensor(
[
[
[0.11984150856733322, 1.237657904624939],
[1.1167771816253662, -0.2472781538963318],
],
[
[-1.3526537418365479, -1.6959311962127686],
[0.5666506290435791, 0.7935083508491516],
],
[
[0.5988394618034363, -1.5550950765609741],
[-0.3413603901863098, 1.85300612449646],
],
],
dtype=torch.float32,
), # noqa
(
(
"_drop_0__BOUND_10",
Bint[3],
),
(
"_drop_1__BOUND_11",
Bint[2],
),
(
"_drop_1__BOUND_9",
Bint[2],
),
),
"real",
),
),
),
Contraction(
funsor.terms.ops.logaddexp,
funsor.terms.ops.add,
frozenset(
{
Variable("_drop_0__BOUND_8", Bint[3]),
Variable("_drop_1__BOUND_9", Bint[2]),
}
), # noqa
(
Tensor(
torch.tensor(
[
[
[0.750189483165741, -0.5854975581169128],
[-0.1733967512845993, 0.18347793817520142],
],
[
[1.3893661499023438, 1.586334228515625],
[0.946298360824585, -0.843676745891571],
],
[
[-0.6135830879211426, 0.03159274160861969],
[-0.4926769733428955, 0.2484147548675537],
],
],
dtype=torch.float32,
), # noqa
(
(
"_drop_0__BOUND_8",
Bint[3],
),
(
"_drop_1__BOUND_9",
Bint[2],
),
(
"_drop_1__BOUND_11",
Bint[2],
),
),
"real",
),
Tensor(
torch.tensor(
[
[
[0.4396958351135254, 0.11241118609905243],
[0.6407923698425293, 0.441156268119812],
],
[
[-0.10230965167284012, 0.7924439907073975],
[-0.28966769576072693, 0.05250748619437218],
],
[
[0.5228604674339294, 2.3022053241729736],
[-1.4688938856124878, -1.586688756942749],
],
],
dtype=torch.float32,
), # noqa
(
(
"a",
Bint[3],
),
(
"b",
Bint[2],
),
(
"_drop_1__BOUND_9",
Bint[2],
),
),
"real",
),
),
),
),
)
expected = reinterpret(term)
actual = apply_optimizer(term)
expected = expected.align(tuple(actual.inputs.keys()))
assert_close(actual, expected)