-
-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
40714de
commit 1389a8b
Showing
1 changed file
with
92 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import numpy as np | ||
import pymc as pm | ||
import pytensor | ||
import pytensor.tensor as pt | ||
|
||
from pymc.logprob.abstract import MeasurableVariable, _get_measurable_outputs | ||
from pytensor.graph.op import Apply, Op | ||
|
||
|
||
class Cov(Op): | ||
__props__ = ("fn",) | ||
|
||
def __init__(self, fn): | ||
self.fn = fn | ||
|
||
def make_node(self, ls): | ||
ls = pt.as_tensor(ls) | ||
out = pt.matrix(shape=(None, None)) | ||
|
||
return Apply(self, [ls], [out]) | ||
|
||
def __call__(self, ls=1.0): | ||
return super().__call__(ls) | ||
|
||
def perform(self, node, inputs, output_storage): | ||
raise NotImplementedError("You should convert Cov into a TensorVariable expression!") | ||
|
||
def do_constant_folding(self, fgraph, node): | ||
return False | ||
|
||
|
||
class GP(Op): | ||
__props__ = ("approx",) | ||
|
||
def __init__(self, approx): | ||
self.approx = approx | ||
|
||
def make_node(self, mean, cov): | ||
mean = pt.as_tensor(mean) | ||
cov = pt.as_tensor(cov) | ||
|
||
if not (cov.owner and isinstance(cov.owner.op, Cov)): | ||
raise ValueError("Second argument should be a Cov output.") | ||
|
||
out = pt.vector(shape=(None,)) | ||
|
||
return Apply(self, [mean, cov], [out]) | ||
|
||
def perform(self, node, inputs, output_storage): | ||
raise NotImplementedError("You cannot evaluate a GP, not enough RAM in the Universe.") | ||
|
||
def do_constant_folding(self, fgraph, node): | ||
return False | ||
|
||
|
||
class PriorFromGP(Op): | ||
"""This Op will be replaced by the right MvNormal.""" | ||
|
||
def make_node(self, gp, x, rng): | ||
gp = pt.as_tensor(gp) | ||
if not (gp.owner and isinstance(gp.owner.op, GP)): | ||
raise ValueError("First argument should be a GP output.") | ||
|
||
# TODO: Assert RNG has the right type | ||
x = pt.as_tensor(x) | ||
out = x.type() | ||
|
||
return Apply(self, [gp, x, rng], [out]) | ||
|
||
def __call__(self, gp, x, rng=None): | ||
if rng is None: | ||
rng = pytensor.shared(np.random.default_rng()) | ||
return super().__call__(gp, x, rng) | ||
|
||
def perform(self, node, inputs, output_storage): | ||
raise NotImplementedError("You should convert PriorFromGP into a MvNormal!") | ||
|
||
def do_constant_folding(self, fgraph, node): | ||
return False | ||
|
||
|
||
cov_op = Cov(fn=pm.gp.cov.ExpQuad) | ||
gp_op = GP("vanilla") | ||
# SymbolicRandomVariable.register(type(gp_op)) | ||
prior_from_gp = PriorFromGP() | ||
|
||
MeasurableVariable.register(type(prior_from_gp)) | ||
|
||
|
||
@_get_measurable_outputs.register(type(prior_from_gp)) | ||
def gp_measurable_outputs(op, node): | ||
return node.outputs |