-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
152 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
#!/usr/bin/python3 | ||
import numpy as np | ||
import gstools as gs | ||
import math | ||
from pykrige.uk import UniversalKriging | ||
from pykrige.ok import OrdinaryKriging | ||
from matplotlib import ticker | ||
from matplotlib import pyplot as plt | ||
from datetime import datetime | ||
plt.style.use('ggplot') | ||
|
||
|
||
def round_up(n, decimals= -1): | ||
multiplier = 10 ** decimals | ||
return int (math.ceil(n * multiplier) / multiplier) | ||
|
||
def round_down(n, decimals= -1): | ||
multiplier = 10 ** decimals | ||
return int (math.floor(n * multiplier) / multiplier) | ||
|
||
def get_v(vmax, vmin): | ||
outMax = round_up(vmax) | ||
outMin = round_down(vmin) | ||
return outMax, outMin | ||
|
||
def myPlot(varLabel=0, varData=[34,5,10,22,200]): | ||
|
||
folder = '' | ||
labelName = '' | ||
units = '' | ||
if varLabel == 0: | ||
folder = 'at/' | ||
labelName = 'Temperatura Aire' | ||
units = ' (°C)' | ||
elif varLabel == 1: | ||
folder = 'ah/' | ||
labelName = 'Humedad Aire' | ||
units = ' (%)' | ||
elif varLabel == 2: | ||
folder = 'et/' | ||
labelName = 'Temperatura Tierra' | ||
units = ' (°C)' | ||
elif varLabel == 3: | ||
folder = 'eh/' | ||
labelName = 'Humedad Tierra' | ||
units = ' (%)' | ||
elif varLabel == 4: | ||
folder = 'l/' | ||
labelName = 'Luz' | ||
units = ' (Lux - lm/m2)' | ||
|
||
|
||
|
||
|
||
|
||
# conditioning data (x, y, values) | ||
data = np.array([ | ||
[5.8, 2.0, varData[0]], #Nodo 1 | ||
[0.1, 1.4, varData[1]], #Nodo 2 | ||
[3.0, 2.3, varData[2]], #Nodo 3 | ||
[5.1, 4.1, varData[3]], #Nodo 4 | ||
[0.1, 5.1, varData[4]], #Nodo 5 | ||
]) | ||
# convert conditioning data | ||
x, y, val = data[:, 0], data[:, 1], data[:, 2] | ||
# grid definition for output field | ||
gridx = np.arange(0.0, 6.0, 0.01) | ||
gridy = np.arange(0.0, 5.6, 0.01) | ||
# a gaussian covariance model | ||
cov_model = gs.Gaussian( dim=2, len_scale=2.8340093019680803, anis=1.0, angles=-0, var=0.7320789975351657, nugget=0.0) | ||
|
||
pk_kwargs = cov_model.pykrige_kwargs | ||
OK1 = OrdinaryKriging(x, y, val, **pk_kwargs) | ||
z1, ss1 = OK1.execute("grid", gridx, gridy) | ||
|
||
fig = plt.figure(figsize=(6.4*1.7, 4.8*1.7)) | ||
#Vmax Vmin | ||
#vMax, vMin = get_v(int(z1.max()), int(z1.min())) | ||
#print(vMax, vMin) | ||
|
||
ss = plt.imshow(z1, origin="lower", cmap=plt.cm.get_cmap('jet', 30), vmin=z1.min(),vmax=z1.max()) | ||
v1 = np.linspace(z1.min(), z1.max(), 16, endpoint=True) | ||
cbar = plt.colorbar(ss, label=labelName + units, ticks=v1) | ||
|
||
cbar.ax.tick_params(labelsize=10) | ||
dt_string = datetime.now().strftime("%d/%m/%Y %H:%M:%S") | ||
title = labelName + units + " - Campo: 6mx5.6m " + dt_string | ||
fig.suptitle(title, fontsize=18) | ||
#plt.show() | ||
plt.close() | ||
|
||
#Guardar Imagen | ||
dt_string = dt_string.replace(":", "-").replace("/", "-") | ||
nameFile = "charts/" + folder + labelName + " " + dt_string + '.png' | ||
fig.savefig(nameFile, dpi=200, format='png' ) | ||
|
||
return nameFile | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
myPlot(0,[55,45,60,40,55]) | ||
|
||
|
||
# #Si es positivo aproxima arriba cada 10 | ||
# #143 => 150 | ||
# #Si es negativo aproxima hacia arriba cada 10 | ||
# #-143 => -140 | ||
# print(-a) | ||
# print(round_up(-a, -1)) | ||
|
||
# #Si es positivo aproxima hacia abajo cada 10 | ||
# #25 => 20 | ||
# #Si es Negativo aproxima hacia abajo cada 10 | ||
# #-24 => -30 | ||
# print(-b) | ||
# print(round_down(-b, -1)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
#!/usr/bin/python3 | ||
import numpy as np | ||
import gstools as gs | ||
from matplotlib import pyplot as plt | ||
plt.style.use('ggplot') | ||
|
||
def main(): | ||
data = np.array([ | ||
[0.1, 5.1], #Nodo 5 | ||
[0.1, 1.4], #Nodo 2 | ||
[3.0, 2.3], #Nodo 3 | ||
[5.1, 4.1], #Nodo 4 | ||
[5.8, 2.0], #Nodo 1 | ||
]) | ||
|
||
# convert conditioning data | ||
x, y = data[:, 0], data[:, 1] | ||
|
||
model = gs.Gaussian(dim=2, var=2, len_scale=3.6) | ||
srf = gs.SRF(model, mean=2, seed=42000)#seed=19970221) | ||
field = srf((x, y)) | ||
# estimate the variogram of the field with 40 bins | ||
bins = np.arange(12) | ||
bin_center, gamma = gs.vario_estimate_unstructured((x, y), field, bins, sampling_size=10, sampling_seed=10) | ||
# fit the variogram with a stable model. (no nugget fitted) | ||
fit_model = gs.Stable(dim=2) | ||
fit_model.fit_variogram(bin_center, gamma, nugget=False) | ||
# output | ||
ax = fit_model.plot(x_max=max(bin_center)) | ||
ax.plot(bin_center, gamma) | ||
plt.show() | ||
print(fit_model) | ||
|
||
if __name__ == "__main__": | ||
main() |