-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #5 from piidus/pandas
Pandas
- Loading branch information
Showing
9 changed files
with
7,458 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,360 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "82beff3b-d13e-4f35-9a4c-78d4f0e4eaa4", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"\n", | ||
"list_ = [ '1' , '2' , '3' , '4' , '5' ]\n", | ||
"array_list = np.array(object = list_)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8a48dca8-631c-4d18-bee2-724cc9b3bc57", | ||
"metadata": {}, | ||
"source": [ | ||
"### Q1. Is there any difference in the data type of variables list_ and array_list? If there is then write a code to print the data types of both the variables." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b98a16f6-40a0-4cd9-88b7-a578c545b270", | ||
"metadata": {}, | ||
"source": [ | ||
"> List_ is a python list object and\n", | ||
"\n", | ||
"> array_list is a numpy array." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"id": "d0e93297-1c9a-4905-b96b-149170ff8244", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"<class 'list'>\n", | ||
"<class 'numpy.ndarray'>\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print(type(list_))\n", | ||
"print(type(array_list))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "89d9edb9-46e6-4167-9a7f-00ab91d02a1b", | ||
"metadata": {}, | ||
"source": [ | ||
"-------------" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "aaabc819-c1f3-4604-86b3-70053fe406a9", | ||
"metadata": {}, | ||
"source": [ | ||
"### Q2. Write a code to print the data type of each and every element of both the variables list_ and arra_list. " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"id": "ccb3047e-316c-44a2-8be4-ced0485ef8e9", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[str, str, str, str, str]" | ||
] | ||
}, | ||
"execution_count": 18, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# For List\n", | ||
"l = [(type(i)) for i in list_]\n", | ||
"l" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"id": "9e553caf-e260-4b2d-b5b2-50800cf6d0ff", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[dtype('<U1'), dtype('<U1'), dtype('<U1'), dtype('<U1'), dtype('<U1')]" | ||
] | ||
}, | ||
"execution_count": 20, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# For array_list\n", | ||
"a = [ i.dtype for i in np.nditer(array_list)]\n", | ||
"a" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "81a653e9-ed4b-4613-8e41-07035b16c3cf", | ||
"metadata": {}, | ||
"source": [ | ||
"--------------" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "de20dd89-236c-4bd7-8855-4875cdede0a5", | ||
"metadata": {}, | ||
"source": [ | ||
"### Q3. Considering the following changes in the variable, array_list:\n", | ||
"\n", | ||
" array_list = np.array(object = list_, dtype = int)\n", | ||
"Will there be any difference in the data type of the elements present in both the variables, list_ and\n", | ||
"arra_list? If so then print the data types of each and every element present in both the variables, list_\n", | ||
"and arra_list." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"id": "c152f979-d66f-4726-8143-187b9117de39", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([1, 2, 3, 4, 5])" | ||
] | ||
}, | ||
"execution_count": 21, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"array_list = np.array(object = list_, dtype = int)\n", | ||
"array_list" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "7fa0b900-56cd-4491-af1b-443700b644c7", | ||
"metadata": {}, | ||
"source": [ | ||
">> array_list is numpy object which values are converted in Integer Format" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 25, | ||
"id": "09d903c1-40a4-4f78-ba15-6498d7a42f81", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"list Type : [<class 'str'>, <class 'str'>, <class 'str'>, <class 'str'>, <class 'str'>] \n", | ||
"array_list : [dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64')]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# For List\n", | ||
"l = [(type(i)) for i in list_]\n", | ||
"al = [ i.dtype for i in np.nditer(array_list)]\n", | ||
"print('list Type :', l, '\\n' 'array_list :', al)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "3d648e86-3c58-41d9-9648-de9f5050203e", | ||
"metadata": {}, | ||
"source": [ | ||
"---------------" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e518bbd7-d11a-48a7-bfed-ece49db526d3", | ||
"metadata": {}, | ||
"source": [ | ||
"### Q4. Write a code to find the following characteristics of variable, num_array:\n", | ||
" -(i) shape\n", | ||
" -(ii) size" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 26, | ||
"id": "634bb1b0-4cfb-425f-96cd-dba54de965fd", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"num_list = [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ]\n", | ||
"num_array = np.array(object = num_list)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 27, | ||
"id": "9f99f94a-91fe-4f28-8fa5-fdd55f02d1cb", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"for Shape : (2, 3) \n", | ||
"for Size : 6\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"print('for Shape :', num_array.shape, '\\n''for Size :', num_array.size)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "55530fb1-a44b-47bd-a36c-fe0371cc5f8b", | ||
"metadata": {}, | ||
"source": [ | ||
"_______" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "9f33c8d6-92f7-4da1-b25a-6e1aec76497c", | ||
"metadata": {}, | ||
"source": [ | ||
"### Q5. Write a code to create numpy array of 3*3 matrix containing zeros only, using a numpy array creation function.\n", | ||
"[Hint: The size of the array will be 9 and the shape will be (3,3).]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 30, | ||
"id": "d90e395a-dbcb-4030-bc2b-56dce122edd3", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"matrix([[0., 0., 0.],\n", | ||
" [0., 0., 0.]])" | ||
] | ||
}, | ||
"execution_count": 30, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"import numpy.matlib as nm\n", | ||
"nm.zeros((2,3))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "87c05630-7bfb-4678-99ea-a85109945632", | ||
"metadata": {}, | ||
"source": [ | ||
"_______" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ce5f26f6-21ed-4093-aba6-4f13cad2979a", | ||
"metadata": {}, | ||
"source": [ | ||
"### Q6. Create an identity matrix of shape (5,5) using numpy functions?\n", | ||
"[Hint: An identity matrix is a matrix containing 1 diagonally and other elements will be 0.]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 56, | ||
"id": "34bc61d8-3157-4be7-b7a6-095c2936857e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ar = nm.eye(5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 57, | ||
"id": "5927ab62-b13f-4568-91a5-682471afa83e", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"matrix([[1., 0., 0., 0., 0.],\n", | ||
" [0., 1., 0., 0., 0.],\n", | ||
" [0., 0., 1., 0., 0.],\n", | ||
" [0., 0., 0., 1., 0.],\n", | ||
" [0., 0., 0., 0., 1.]])" | ||
] | ||
}, | ||
"execution_count": 57, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"ar" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "93a0779c-9959-44a5-a50f-e425b332107c", | ||
"metadata": {}, | ||
"source": [ | ||
"___________" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.