from an image by haar cascade get plate, then from plate get regions (by MSER) , from regions get letters/digits by SVM/logistic regression
Usage: python3 image2characters.py filename
The flow of the program is defined in image2characters.py. It uses modules rekkariDetectionSave.py
- to find a region in the image containing the plate (Haar cascades of opencv) filterImage.py
- to make the image more clear filterCharacterRegions.py (inherits from initialCharacterRegions.py)
- to get list of six-rectangles for possible plete-character regions of the image myClassifier.py
- to detect characters
Background:
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition raw training data in mka@mka-HP:~/PycharmProjects/Rekkari/Training
└── TrainSVM ├── Digits │ └── SvmDir ├── Letters │ └── SvmDir
copied as follows
Kauppi:/PycharmProjects/Image2Characters> cp TrainSVM/Letters/SvmDir/logistic.pkl letters_logistic.pkl
Kauppi:/PycharmProjects/Image2Characters> cp TrainSVM/Letters/SvmDir/allSVM.txt.dict letters_logreg.dict
Kauppi:/PycharmProjects/Image2Characters> cp TrainSVM/Digits//SvmDir/logistic.pkl digits_logistic.pkl
Kauppi:/PycharmProjects/Image2Characters> cp TrainSVM/Digits//SvmDir/allSVM.txt.dict digits_logreg.dict
Sphinx: sphinx-quickstart
autodoc: automatically insert docstrings from modules (y/n) [n]: y edit index.rst make html