-
Notifications
You must be signed in to change notification settings - Fork 499
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[xla:cpu] Extract convolution_lib from a convolution_thunk
+ Modernize convolution thunk implementation to use CountDownAsyncValueRef directly PiperOrigin-RevId: 720210761
- Loading branch information
1 parent
ebf3da4
commit ad9df12
Showing
15 changed files
with
455 additions
and
262 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
/* Copyright 2025 The OpenXLA Authors. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#include "xla/backends/cpu/runtime/convolution_lib.h" | ||
|
||
#include <cstdint> | ||
|
||
#include "absl/container/inlined_vector.h" | ||
#include "absl/types/span.h" | ||
#include "xla/runtime/buffer_use.h" | ||
|
||
namespace xla::cpu { | ||
|
||
absl::InlinedVector<BufferUse, 4> ConvolutionBufferUses( | ||
const ConvolutionSlices& slices) { | ||
return {BufferUse::Read(slices.input_buffer), | ||
BufferUse::Read(slices.kernel_buffer), | ||
BufferUse::Write(slices.output_buffer)}; | ||
} | ||
|
||
ConvolutionCanonicalDims::Dims::Dims(absl::Span<const int64_t> dims) | ||
: rank(dims.size()), x(dims[0]), y(dims[1]), z(rank == 3 ? dims[2] : 0) {} | ||
|
||
} // namespace xla::cpu |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
/* Copyright 2025 The OpenXLA Authors. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
==============================================================================*/ | ||
|
||
#ifndef XLA_BACKENDS_CPU_RUNTIME_CONVOLUTION_LIB_H_ | ||
#define XLA_BACKENDS_CPU_RUNTIME_CONVOLUTION_LIB_H_ | ||
|
||
#include <cstddef> | ||
#include <cstdint> | ||
|
||
#include "absl/container/inlined_vector.h" | ||
#include "absl/strings/str_format.h" | ||
#include "absl/types/span.h" | ||
#include "xla/runtime/buffer_use.h" | ||
#include "xla/service/buffer_assignment.h" | ||
#include "xla/shape.h" | ||
|
||
namespace xla::cpu { | ||
|
||
// Allocation slices of the convolution operation. | ||
struct ConvolutionSlices { | ||
BufferAllocation::Slice input_buffer; | ||
Shape input_shape; | ||
|
||
BufferAllocation::Slice kernel_buffer; | ||
Shape kernel_shape; | ||
|
||
BufferAllocation::Slice output_buffer; | ||
Shape output_shape; | ||
}; | ||
|
||
// Returns buffer uses of the dot operation. | ||
absl::InlinedVector<BufferUse, 4> ConvolutionBufferUses( | ||
const ConvolutionSlices& slices); | ||
|
||
// Convolution dimensions in canonical form inferred from the operands shapes | ||
// and convolution parameters. | ||
struct ConvolutionCanonicalDims { | ||
// A helper struct to store the x, y and z dimensions of a tensor, introduced | ||
// for readability. In case of 2D convolution, only the x and y dimensions are | ||
// used and z is set to 0. | ||
struct Dims { | ||
explicit Dims(absl::Span<const int64_t> dims); | ||
|
||
template <typename Sink> | ||
friend void AbslStringify(Sink& sink, const Dims& d); | ||
|
||
int64_t rank; | ||
int64_t x; | ||
int64_t y; | ||
int64_t z; | ||
}; | ||
|
||
template <typename Sink> | ||
friend void AbslStringify(Sink& sink, const ConvolutionCanonicalDims& d); | ||
|
||
size_t convolution_rank() const { return input_dims.rank; } | ||
|
||
int64_t input_batch; | ||
Dims input_dims; | ||
int64_t input_channels; | ||
|
||
Dims kernel_dims; | ||
int64_t kernel_channels; | ||
int64_t kernel_filters; | ||
|
||
Dims output_dims; | ||
|
||
Dims strides; | ||
Dims padding_before; | ||
Dims padding_after; | ||
Dims base_dilation; | ||
Dims window_dilation; | ||
|
||
int64_t feature_group_count; | ||
}; | ||
|
||
template <typename Sink> | ||
void AbslStringify(Sink& sink, const ConvolutionCanonicalDims::Dims& d) { | ||
switch (d.rank) { | ||
case 2: | ||
absl::Format(&sink, "[%d,%d]", d.x, d.y); | ||
break; | ||
case 3: | ||
absl::Format(&sink, "[%d,%d,%d]", d.x, d.y, d.z); | ||
break; | ||
default: | ||
absl::Format(&sink, "[invalid rank %d]", d.rank); | ||
} | ||
} | ||
|
||
template <typename Sink> | ||
void AbslStringify(Sink& sink, const ConvolutionCanonicalDims& d) { | ||
absl::Format(&sink, | ||
"convolution_rank=%d input_batch=%d input_dims=%v " | ||
"input_channels=%d kernel_dims=%v kernel_channels=%d " | ||
"kernel_filters=%d output_dims=%v strides=%v padding_before=%v " | ||
"padding_after=%v base_dilation=%v window_dilation=%v " | ||
"feature_group_count=%d", | ||
d.convolution_rank(), d.input_batch, d.input_dims, | ||
d.input_channels, d.kernel_dims, d.kernel_channels, | ||
d.kernel_filters, d.output_dims, d.strides, d.padding_before, | ||
d.padding_after, d.base_dilation, d.window_dilation, | ||
d.feature_group_count); | ||
} | ||
|
||
} // namespace xla::cpu | ||
|
||
#endif // XLA_BACKENDS_CPU_RUNTIME_CONVOLUTION_LIB_H_ |
Oops, something went wrong.