Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adapt to latest changes in llm microservice famliy #696

Merged
merged 1 commit into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions helm-charts/common/llm-uservice/.helmignore
Original file line number Diff line number Diff line change
Expand Up @@ -21,3 +21,5 @@
.idea/
*.tmproj
.vscode/
# CI values
ci*-values.yaml
89 changes: 62 additions & 27 deletions helm-charts/common/llm-uservice/README.md
Original file line number Diff line number Diff line change
@@ -1,55 +1,90 @@
# llm-uservice

Helm chart for deploying LLM microservice.
Helm chart for deploying OPEA LLM microservices.

llm-uservice depends on TGI, you should set TGI_LLM_ENDPOINT as tgi endpoint.
## Installing the chart

## (Option1): Installing the chart separately
`llm-uservice` depends on one of the following inference backend services:

First, you need to install the tgi chart, please refer to the [tgi](../tgi) chart for more information.
- TGI: please refer to [tgi](../tgi) chart for more information

After you've deployted the tgi chart successfully, please run `kubectl get svc` to get the tgi service endpoint, i.e. `http://tgi`.
- vLLM: please refer to [vllm](../vllm) chart for more information

To install the chart, run the following:
First, you need to install one of the dependent chart, i.e. `tgi` or `vllm` helm chart.

```console
cd GenAIInfra/helm-charts/common/llm-uservice
export HFTOKEN="insert-your-huggingface-token-here"
export TGI_LLM_ENDPOINT="http://tgi"
helm dependency update
helm install llm-uservice . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set TGI_LLM_ENDPOINT=${TGI_LLM_ENDPOINT} --wait
```
After you've deployed the dependent chart successfully, please run `kubectl get svc` to get the backend inference service endpoint, e.g. `http://tgi`, `http://vllm`.

## (Option2): Installing the chart with dependencies automatically
To install the `llm-uservice` chart, run the following:

```console
cd GenAIInfra/helm-charts/common/llm-uservice
export HFTOKEN="insert-your-huggingface-token-here"
helm dependency update
helm install llm-uservice . --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --set tgi.enabled=true --wait
export HFTOKEN="insert-your-huggingface-token-here"
# set backend inferene service endpoint URL
# for tgi
export LLM_ENDPOINT="http://tgi"
# for vllm
# export LLM_ENDPOINT="http://vllm"

# set the same model used by the backend inference service
export LLM_MODEL_ID="Intel/neural-chat-7b-v3-3"

# install llm-textgen with TGI backend
helm install llm-uservice . --set TEXTGEN_BACKEND="TGI" --set LLM_ENDPOINT=${LLM_ENDPOINT} --set LLM_MODEL_ID=${LLM_MODEL_ID} --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --wait

# install llm-textgen with vLLM backend
# helm install llm-uservice . --set TEXTGEN_BACKEND="vLLM" --set LLM_ENDPOINT=${LLM_ENDPOINT} --set LLM_MODEL_ID=${LLM_MODEL_ID} --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --wait

# install llm-docsum with TGI backend
# helm install llm-uservice . --set image.repository="opea/llm-docsum" --set DOCSUM_BACKEND="TGI" --set LLM_ENDPOINT=${LLM_ENDPOINT} --set LLM_MODEL_ID=${LLM_MODEL_ID} --set MAX_INPUT_TOKENS=2048 --set MAX_TOTAL_TOKENS=4096 --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --wait

# install llm-docsum with vLLM backend
# helm install llm-uservice . --set image.repository="opea/llm-docsum" --set DOCSUM_BACKEND="vLLM" --set LLM_ENDPOINT=${LLM_ENDPOINT} --set LLM_MODEL_ID=${LLM_MODEL_ID} --set MAX_INPUT_TOKENS=2048 --set MAX_TOTAL_TOKENS=4096 --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --wait

# install llm-faqgen with TGI backend
# helm install llm-uservice . --set image.repository="opea/llm-faqgen" --set FAQGEN_BACKEND="TGI" --set LLM_ENDPOINT=${LLM_ENDPOINT} --set LLM_MODEL_ID=${LLM_MODEL_ID} --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --wait

# install llm-faqgen with vLLM backend
# helm install llm-uservice . --set image.repository="opea/llm-faqgen" --set FAQGEN_BACKEND="vLLM" --set LLM_ENDPOINT=${LLM_ENDPOINT} --set LLM_MODEL_ID=${LLM_MODEL_ID} --set global.HUGGINGFACEHUB_API_TOKEN=${HFTOKEN} --wait
```

## Verify

To verify the installation, run the command `kubectl get pod` to make sure all pods are running.

Then run the command `kubectl port-forward svc/llm-uservice 9000:9000` to expose the llm-uservice service for access.
Then run the command `kubectl port-forward svc/llm-uservice 9000:9000` to expose the service for access.

Open another terminal and run the following command to verify the service if working:

```console
# for llm-textgen service
curl http://localhost:9000/v1/chat/completions \
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
-H 'Content-Type: application/json'
-X POST \
-d d '{"model": "${LLM_MODEL_ID}", "messages": "What is Deep Learning?", "max_tokens":17}' \
-H 'Content-Type: application/json'

# for llm-docsum service
curl http://localhost:9000/v1/docsum \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "max_tokens":32, "language":"en"}' \
-H 'Content-Type: application/json'

# for llm-faqgen service
curl http://localhost:9000/v1/faqgen \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens": 128}' \
-H 'Content-Type: application/json'
```

## Values

| Key | Type | Default | Description |
| ------------------------------- | ------ | ---------------- | ------------------------------- |
| global.HUGGINGFACEHUB_API_TOKEN | string | `""` | Your own Hugging Face API token |
| image.repository | string | `"opea/llm-tgi"` | |
| service.port | string | `"9000"` | |
| TGI_LLM_ENDPOINT | string | `""` | LLM endpoint |
| global.monitoring | bool | `false` | Service usage metrics |
| Key | Type | Default | Description |
| ------------------------------- | ------ | ----------------------------- | -------------------------------------------------------------------------------- |
| global.HUGGINGFACEHUB_API_TOKEN | string | `""` | Your own Hugging Face API token |
| image.repository | string | `"opea/llm-textgen"` | one of "opea/llm-textgen", "opea/llm-docsum", "opea/llm-faqgen" |
| LLM_ENDPOINT | string | `""` | backend inference service endpoint |
| LLM_MODEL_ID | string | `"Intel/neural-chat-7b-v3-3"` | model used by the inference backend |
| TEXTGEN_BACKEND | string | `"tgi"` | backend inference engine, only valid for llm-textgen image, one of "TGI", "vLLM" |
| DOCSUM_BACKEND | string | `"tgi"` | backend inference engine, only valid for llm-docsum image, one of "TGI", "vLLM" |
| FAQGEN_BACKEND | string | `"tgi"` | backend inference engine, only valid for llm-faqgen image, one of "TGi", "vLLM" |
Comment on lines +87 to +89
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ConfigMap template does case-sensitive comparison, so the default values need to be updated too: tgi -> TGI.

Copy link
Collaborator Author

@lianhao lianhao Jan 15, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

since it's already merged, I'll do that in another pending PR.

| global.monitoring | bool | `false` | Service usage metrics |
4 changes: 3 additions & 1 deletion helm-charts/common/llm-uservice/ci-docsum-values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,15 @@
# SPDX-License-Identifier: Apache-2.0

image:
repository: opea/llm-docsum-tgi
repository: opea/llm-docsum
tag: "latest"

LLM_MODEL_ID: "Intel/neural-chat-7b-v3-3"
MAX_INPUT_TOKENS: 2048
MAX_TOTAL_TOKENS: 4096

tgi:
LLM_MODEL_ID: "Intel/neural-chat-7b-v3-3"
enabled: true
MAX_INPUT_LENGTH: 2048
MAX_TOTAL_TOKENS: 4096
4 changes: 3 additions & 1 deletion helm-charts/common/llm-uservice/ci-faqgen-values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,11 @@
# SPDX-License-Identifier: Apache-2.0

image:
repository: opea/llm-faqgen-tgi
repository: opea/llm-faqgen
tag: "latest"

LLM_MODEL_ID: meta-llama/Meta-Llama-3-8B-Instruct

tgi:
enabled: true
LLM_MODEL_ID: meta-llama/Meta-Llama-3-8B-Instruct
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

image:
repository: opea/llm-docsum
tag: "latest"

DOCSUM_BACKEND: "vLLM"
LLM_MODEL_ID: "Intel/neural-chat-7b-v3-3"
MAX_INPUT_TOKENS: 2048
MAX_TOTAL_TOKENS: 4096


tgi:
enabled: false
vllm:
enabled: true
image:
repository: opea/vllm-gaudi
tag: "latest"
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
OMPI_MCA_btl_vader_single_copy_mechanism: none
extraCmdArgs: ["--tensor-parallel-size","1","--block-size","128","--max-num-seqs","256","--max-seq_len-to-capture","2048"]
resources:
limits:
habana.ai/gaudi: 1
5 changes: 1 addition & 4 deletions helm-charts/common/llm-uservice/ci-vllm-gaudi-values.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,5 @@ vllm:
limits:
habana.ai/gaudi: 1

vLLM_ENDPOINT: ""
TEXTGEN_BACKEND: "vLLM"
LLM_MODEL_ID: Intel/neural-chat-7b-v3-3
image:
repository: opea/llm-vllm
tag: "latest"
61 changes: 45 additions & 16 deletions helm-charts/common/llm-uservice/templates/configmap.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -8,30 +8,59 @@ metadata:
labels:
{{- include "llm-uservice.labels" . | nindent 4 }}
data:
{{- if .Values.TGI_LLM_ENDPOINT }}
TGI_LLM_ENDPOINT: {{ .Values.TGI_LLM_ENDPOINT | quote }}
{{- if hasSuffix "llm-textgen" .Values.image.repository }}
{{- if eq "TGI" .Values.TEXTGEN_BACKEND }}
LLM_COMPONENT_NAME: "OPEA_LLM"
{{- if not .Values.LLM_ENDPOINT }}
LLM_ENDPOINT: "http://{{ .Release.Name }}-tgi"
{{- end }}
{{- else if eq "vLLM" .Values.TEXTGEN_BACKEND }}
LLM_COMPONENT_NAME: "OPEA_LLM"
{{- if not .Values.LLM_ENDPOINT }}
LLM_ENDPOINT: "http://{{ .Release.Name }}-vllm"
{{- end }}
{{- else }}
TGI_LLM_ENDPOINT: "http://{{ .Release.Name }}-tgi"
{{- cat "Invalid TEXTGEN_BACKEND:" .Values.TEXTGEN_BACKEND | fail }}
{{- end }}
{{- else if hasSuffix "llm-docsum" .Values.image.repository }}
MAX_INPUT_TOKENS: {{ .Values.MAX_INPUT_TOKENS | default "" | quote }}
MAX_TOTAL_TOKENS: {{ .Values.MAX_TOTAL_TOKENS | default "" | quote }}
{{- if eq "TGI" .Values.DOCSUM_BACKEND }}
DocSum_COMPONENT_NAME: "OPEADocSum_TGI"
{{- if not .Values.LLM_ENDPOINT }}
LLM_ENDPOINT: "http://{{ .Release.Name }}-tgi"
{{- end }}
{{- else if eq "vLLM" .Values.DOCSUM_BACKEND }}
DocSum_COMPONENT_NAME: "OPEADocSum_vLLM"
{{- if not .Values.LLM_ENDPOINT }}
LLM_ENDPOINT: "http://{{ .Release.Name }}-vllm"
{{- end }}
{{- if .Values.vLLM_ENDPOINT }}
vLLM_ENDPOINT: {{ .Values.vLLM_ENDPOINT | quote }}
{{- else }}
vLLM_ENDPOINT: "http://{{ .Release.Name }}-vllm"
{{- cat "Invalid DOCUSM_BACKEND:" .Values.DOCSUM_BACKEND | fail }}
{{- end }}
{{- if .Values.LLM_MODEL_ID }}
# NOTE:
# delete LLM_MODEL once https://github.com/opea-project/GenAIComps/pull/1089 is merged
LLM_MODEL: {{ .Values.LLM_MODEL_ID | quote }}
LLM_MODEL_ID: {{ .Values.LLM_MODEL_ID | quote }}
{{- else if hasSuffix "llm-faqgen" .Values.image.repository }}
{{- if eq "TGI" .Values.FAQGEN_BACKEND }}
FAQGen_COMPONENT_NAME: "OPEAFAQGen_TGI"
{{- if not .Values.LLM_ENDPOINT }}
LLM_ENDPOINT: "http://{{ .Release.Name }}-tgi"
{{- end }}
{{- if .Values.MAX_INPUT_TOKENS }}
MAX_INPUT_TOKENS: {{ .Values.MAX_INPUT_TOKENS | quote }}
{{- else if eq "vLLM" .Values.FAQGEN_BACKEND }}
FAQGen_COMPONENT_NAME: "OPEAFAQGen_vLLM"
{{- if not .Values.LLM_ENDPOINT }}
LLM_ENDPOINT: "http://{{ .Release.Name }}-vllm"
{{- end }}
{{- if .Values.MAX_TOTAL_TOKENS }}
MAX_TOTAL_TOKENS: {{ .Values.MAX_TOTAL_TOKENS | quote }}
{{- else }}
{{- cat "Invalid FAQGEN_BACKEND:" .Values.FAQGEN_BACKEND | fail }}
{{- end }}
{{- end }}
{{- if .Values.LLM_ENDPOINT }}
LLM_ENDPOINT: {{ tpl .Values.LLM_ENDPOINT . | quote }}
lianhao marked this conversation as resolved.
Show resolved Hide resolved
{{- end }}
{{- if .Values.LLM_MODEL_ID }}
LLM_MODEL_ID: {{ .Values.LLM_MODEL_ID | quote }}
{{- end }}
HUGGINGFACEHUB_API_TOKEN: {{ .Values.global.HUGGINGFACEHUB_API_TOKEN | quote }}
HF_HOME: "/tmp/.cache/huggingface"
HF_TOKEN: {{ .Values.global.HUGGINGFACEHUB_API_TOKEN | quote }}
{{- if .Values.global.HF_ENDPOINT }}
HF_ENDPOINT: {{ .Values.global.HF_ENDPOINT | quote }}
{{- end }}
Expand Down
32 changes: 31 additions & 1 deletion helm-charts/common/llm-uservice/templates/deployment.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,38 @@ spec:
serviceAccountName: {{ include "llm-uservice.serviceAccountName" . }}
securityContext:
{{- toYaml .Values.podSecurityContext | nindent 8 }}
initContainers:
- name: wait-for-llm
envFrom:
- configMapRef:
name: {{ include "llm-uservice.fullname" . }}-config
{{- if .Values.global.extraEnvConfig }}
- configMapRef:
name: {{ .Values.global.extraEnvConfig }}
optional: true
{{- end }}
securityContext:
{{- toYaml .Values.securityContext | nindent 12 }}
image: busybox:1.36
command: ["sh", "-c"]
args:
- |
proto=$(echo ${LLM_ENDPOINT} | sed -n 's/.*\(http[s]\?\):\/\/\([^ :]\+\):\?\([0-9]*\).*/\1/p');
host=$(echo ${LLM_ENDPOINT} | sed -n 's/.*\(http[s]\?\):\/\/\([^ :]\+\):\?\([0-9]*\).*/\2/p');
port=$(echo ${LLM_ENDPOINT} | sed -n 's/.*\(http[s]\?\):\/\/\([^ :]\+\):\?\([0-9]*\).*/\3/p');
if [ -z "$port" ]; then
port=80;
[[ "$proto" = "https" ]] && port=443;
fi;
retry_count={{ .Values.retryCount | default 60 }};
j=1;
while ! nc -z ${host} ${port}; do
[[ $j -ge ${retry_count} ]] && echo "ERROR: ${host}:${port} is NOT reachable in $j seconds!" && exit 1;
j=$((j+1)); sleep 1;
done;
echo "${host}:${port} is reachable within $j seconds.";
containers:
- name: {{ .Release.Name }}
- name: {{ .Chart.Name }}
envFrom:
- configMapRef:
name: {{ include "llm-uservice.fullname" . }}-config
Expand Down
28 changes: 12 additions & 16 deletions helm-charts/common/llm-uservice/templates/tests/test-pod.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,26 +17,22 @@ spec:
command: ['bash', '-c']
args:
- |
{{- if contains "llm-docsum" .Values.image.repository }}
url="http://{{ include "llm-uservice.fullname" . }}:{{ .Values.service.port }}/v1/docsum";
body='{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":17}';
{{- else if contains "llm-faqgen" .Values.image.repository }}
url="http://{{ include "llm-uservice.fullname" . }}:{{ .Values.service.port }}/v1/faqgen";
body='{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":17}';
{{- else }}
url="http://{{ include "llm-uservice.fullname" . }}:{{ .Values.service.port }}/v1/chat/completions";
body='{"model": "{{ .Values.LLM_MODEL_ID }}", "messages": [{"role": "user", "content": "What is Deep Learning?"}], "max_tokens":17}';
{{- end }}
max_retry=20;
for ((i=1; i<=max_retry; i++)); do
{{- if contains "llm-docsum-tgi" .Values.image.repository }}
# Try with docsum endpoint
curl http://{{ include "llm-uservice.fullname" . }}:{{ .Values.service.port }}/v1/chat/docsum -sS --fail-with-body \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":17}' \
-H 'Content-Type: application/json' && break;
{{- else if contains "llm-faqgen-tgi" .Values.image.repository }}
# Try with faqgen endpoint
curl http://{{ include "llm-uservice.fullname" . }}:{{ .Values.service.port }}/v1/faqgen -sS --fail-with-body \
curl "$url" -sS --fail-with-body \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.","max_tokens":17}' \
-d "$body" \
-H 'Content-Type: application/json' && break;
{{- else }}
curl http://{{ include "llm-uservice.fullname" . }}:{{ .Values.service.port }}/v1/chat/completions -sS --fail-with-body \
-X POST \
-d '{"query":"What is Deep Learning?","max_tokens":17,"top_k":10,"top_p":0.95,"typical_p":0.95,"temperature":0.01,"repetition_penalty":1.03,"streaming":true}' \
-H 'Content-Type: application/json' && break;
{{- end }}
curlcode=$?
if [[ $curlcode -eq 7 ]]; then sleep 10; else echo "curl failed with code $curlcode"; exit 1; fi;
done;
Expand Down
Loading
Loading