Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix for multidimensional gaussian process #1097

Merged
merged 9 commits into from
May 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOGS.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

## 1.17.0 (development)

* Fix for multidimensional gaussian process
[#1097](https://github.com/onnx/sklearn-onnx/pull/1097)
* Minor fixes to support scikit-learn==1.5.0
[#1095](https://github.com/onnx/sklearn-onnx/pull/1095)
* Fix the conversion of pipeline including pipelines,
Expand Down
17 changes: 10 additions & 7 deletions skl2onnx/operator_converters/gaussian_process.py
Original file line number Diff line number Diff line change
Expand Up @@ -126,12 +126,12 @@ def convert_gaussian_process_regressor(
if len(mean_y.shape) == 1:
mean_y = mean_y.reshape(mean_y.shape + (1,))

if not hasattr(op, "_y_train_std") or op._y_train_std == 1:
if not hasattr(op, "_y_train_std") or np.all(op._y_train_std == 1):
if isinstance(y_mean_b, (np.float32, np.float64)):
y_mean_b = np.array([y_mean_b])
if isinstance(mean_y, (np.float32, np.float64)):
mean_y = np.array([mean_y])
y_mean = OnnxAdd(y_mean_b, mean_y, op_version=opv)
y_mean = OnnxAdd(y_mean_b, mean_y.T, op_version=opv)
else:
# A bug was fixed in 0.23 and it changed
# the predictions when return_std is True.
Expand All @@ -145,13 +145,13 @@ def convert_gaussian_process_regressor(
if isinstance(mean_y, (np.float32, np.float64)):
mean_y = np.array([mean_y])
y_mean = OnnxAdd(
OnnxMul(y_mean_b, var_y, op_version=opv), mean_y, op_version=opv
OnnxMul(y_mean_b, var_y.T, op_version=opv), mean_y.T, op_version=opv
)

y_mean.set_onnx_name_prefix("gpr")
y_mean_reshaped = OnnxReshapeApi13(
y_mean,
np.array([-1, 1], dtype=np.int64),
np.array([-1, mean_y.shape[0]], dtype=np.int64),
op_version=opv,
output_names=out[:1],
)
Expand Down Expand Up @@ -192,12 +192,15 @@ def convert_gaussian_process_regressor(
# y_var[y_var_negative] = 0.0
ys0_var = OnnxMax(ys_var, np.array([0], dtype=dtype), op_version=opv)

if hasattr(op, "_y_train_std") and op._y_train_std != 1:
if hasattr(op, "_y_train_std"):
# y_var = y_var * self._y_train_std**2
ys0_var = OnnxMul(ys0_var, var_y**2, op_version=opv)
ys0_var = OnnxMul(
ys0_var, (op._y_train_std**2).astype(dtype), op_version=opv
)

# var = np.sqrt(ys0_var)
var = OnnxSqrt(ys0_var, output_names=out[1:], op_version=opv)
var = OnnxSqrt(ys0_var, op_version=opv)
var = OnnxTranspose(var, output_names=out[1:], op_version=opv)
var.set_onnx_name_prefix("gprv")
outputs.append(var)

Expand Down
31 changes: 24 additions & 7 deletions tests/test_sklearn_gaussian_process_regressor.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,13 +24,7 @@
WhiteKernel,
)
from sklearn.model_selection import train_test_split

try:
# scikit-learn >= 0.22
from sklearn.utils._testing import ignore_warnings
except ImportError:
# scikit-learn < 0.22
from sklearn.utils.testing import ignore_warnings
from sklearn.utils._testing import ignore_warnings
from sklearn.exceptions import ConvergenceWarning
from skl2onnx.common.data_types import FloatTensorType, DoubleTensorType
from skl2onnx import to_onnx
Expand Down Expand Up @@ -1019,6 +1013,9 @@ def test_gpr_rbf_fitted_return_std_exp_sine_squared_false(self):
model_onnx,
verbose=False,
basename="SklearnGaussianProcessExpSineSquaredStdF-Out0-Dec3",
# operator MatMul gets replaced by FusedMatMul but onnxruntime does not check
# the availability of the kernel for double.
disable_optimisation=True,
)
self.check_outputs(
gp,
Expand Down Expand Up @@ -1418,6 +1415,7 @@ def test_x_issue_789_cdist(self):
pipe.predict(vx1.astype(np.float64)).ravel(), pred[0].ravel()
)

@ignore_warnings(category=ConvergenceWarning)
def test_white_kernel_float(self):
X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
tx1, vx1, ty1, vy1 = train_test_split(X, y)
Expand All @@ -1436,6 +1434,7 @@ def test_white_kernel_float(self):
gpr.predict(vx1.astype(np.float32)).ravel(), pred[0].ravel(), rtol=1e-3
)

@ignore_warnings(category=ConvergenceWarning)
def test_white_kernel_double(self):
X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
tx1, vx1, ty1, vy1 = train_test_split(X, y)
Expand Down Expand Up @@ -1498,11 +1497,29 @@ def test_kernel_white_kernel(self):
m2 = ker(x, x)
assert_almost_equal(m2, m1, decimal=5)

def test_issue_1073_multidimension_process(self):
# multioutput gpr
n_samples, n_features, n_targets = 1000, 8, 3
X, y = make_regression(n_samples, n_features, n_targets=n_targets)
tx1, vx1, ty1, vy1 = train_test_split(X, y)
model = GaussianProcessRegressor()
model.fit(tx1, ty1)
initial_type = [("data_in", DoubleTensorType([None, X.shape[1]]))]
onx = to_onnx(model, initial_types=initial_type, target_opset=_TARGET_OPSET_)
sess = InferenceSession(
onx.SerializeToString(), providers=["CPUExecutionProvider"]
)
pred = sess.run(None, {"data_in": vx1.astype(np.float64)})
assert_almost_equal(
model.predict(vx1.astype(np.float64)).ravel(), pred[0].ravel()
)


if __name__ == "__main__":
# import logging
# log = logging.getLogger('skl2onnx')
# log.setLevel(logging.DEBUG)
# logging.basicConfig(level=logging.DEBUG)
# TestSklearnGaussianProcessRegressor().test_kernel_white_kernel()
# TestSklearnGaussianProcessRegressor().test_issue_1073()
unittest.main(verbosity=2)
Loading