Skip to content

Commit

Permalink
Merge branch 'master' into enh-conversion-to-coreml
Browse files Browse the repository at this point in the history
  • Loading branch information
oddkiva committed Dec 17, 2023
2 parents a82c59d + 62a7c71 commit fed2729
Show file tree
Hide file tree
Showing 25 changed files with 2,516 additions and 379 deletions.
4 changes: 2 additions & 2 deletions cpp/examples/Kalpana/Qt/kalpana_hello_coordinate_systems.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -251,7 +251,7 @@ class Window : public QOpenGLWindow
SARA_DEBUG << "Initialize texture data on GPU" << std::endl;

// Texture 0.
const auto image0_path = src_path("../../../data/ksmall.jpg");
const auto image0_path = src_path("../../../../data/ksmall.jpg");
const auto image0 = QImage{image0_path}.mirrored();
m_texture0 = new QOpenGLTexture{image0};
m_texture0->setMinificationFilter(QOpenGLTexture::LinearMipMapLinear);
Expand All @@ -261,7 +261,7 @@ class Window : public QOpenGLWindow
m_program->setUniformValue("texture0", 0);

// Texture 1.
const auto image1_path = src_path("../../../data/sunflowerField.jpg");
const auto image1_path = src_path("../../../../data/sunflowerField.jpg");
const auto image1 = QImage{image1_path}.mirrored();
m_texture1 = new QOpenGLTexture{image1};
m_texture1->setMinificationFilter(QOpenGLTexture::LinearMipMapLinear);
Expand Down
118 changes: 118 additions & 0 deletions cpp/examples/Sara/NeuralNetworks/check_yolo_network.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
// ========================================================================== //
// This file is part of Sara, a basic set of libraries in C++ for computer
// vision.
//
// Copyright (C) 2021-present David Ok <[email protected]>
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License v. 2.0. If a copy of the MPL was not distributed with this file,
// you can obtain one at http://mozilla.org/MPL/2.0/.
// ========================================================================== //

#include <DO/Sara/Core.hpp>
#include <DO/Sara/Core/TicToc.hpp>
#include <DO/Sara/Graphics.hpp>
#include <DO/Sara/ImageIO.hpp>
#include <DO/Sara/ImageProcessing.hpp>
#include <DO/Sara/NeuralNetworks/Darknet/Network.hpp>
#include <DO/Sara/NeuralNetworks/Darknet/Parser.hpp>
#include <DO/Sara/NeuralNetworks/Darknet/YoloUtilities.hpp>
#include <DO/Sara/VideoIO.hpp>

#include <filesystem>
#include <iomanip>

#ifdef _OPENMP
# include <omp.h>
#endif

#define COMPARE_WITH_DARKNET_OUTPUT
#if defined(COMPARE_WITH_DARKNET_OUTPUT)
# include <DO/Sara/NeuralNetworks/Darknet/Debug.hpp>
#endif


namespace d = DO::Sara::Darknet;
namespace fs = std::filesystem;
namespace sara = DO::Sara;


inline auto check_yolo_implementation(d::Network& model,
const std::string& output_dir)
{
if (!fs::exists(output_dir))
throw std::runtime_error{"Ouput directory " + output_dir +
"does not exist!"};

// Check the weights.
d::check_convolutional_weights(model, output_dir);

const auto x = d::read_tensor( //
(fs::path{output_dir} / "input.bin").string() //
);
const auto xt = x.transpose({0, 2, 3, 1});

const auto image = sara::ImageView<sara::Rgb32f>{
reinterpret_cast<sara::Rgb32f*>(const_cast<float*>(xt.data())),
{xt.size(2), xt.size(1)}};
const auto& image_resized = image;

sara::create_window(3 * image.width(), image.height());
sara::display(image);

model.debug = true;

model.forward(x);

// Compare my layer outputs with Darknet's.
const auto gt = d::read_all_intermediate_outputs(output_dir);

const auto& net = model.net;
for (auto layer = 1u; layer < net.size(); ++layer)
{
std::cout << "CHECKING LAYER " << layer << ": " << net[layer]->type
<< std::endl
<< *net[layer] << std::endl;
d::check_against_ground_truth(gt[layer - 1], net[layer]->output,
image_resized.sizes(),
/* max_diff_thres */ 2e-4f,
/* show_errors */ true);
}

SARA_DEBUG << "EVERYTHING OK" << std::endl;
SARA_DEBUG << "EVERYTHING OK" << std::endl;
SARA_DEBUG << "EVERYTHING OK" << std::endl;
SARA_DEBUG << "EVERYTHING OK" << std::endl;
SARA_DEBUG << "EVERYTHING OK" << std::endl;
SARA_DEBUG << "EVERYTHING OK" << std::endl;
}


auto graphics_main(int, char**) -> int
{
const auto data_dir_path = fs::canonical(fs::path{src_path("data")});

static constexpr auto yolo_version = 4;
static constexpr auto is_tiny = false;
const auto yolo_dirpath = data_dir_path / "trained_models" /
("yolov" + std::to_string(yolo_version));
auto model =
sara::Darknet::load_yolo_model(yolo_dirpath, yolo_version, is_tiny);

const auto yolo_intermediate_output_dir = "/home/david/GitHub/darknet/yolov4";
check_yolo_implementation(model, yolo_intermediate_output_dir);

return 0;
}


auto main(int argc, char** argv) -> int
{
#ifndef __APPLE__
Eigen::initParallel();
#endif

DO::Sara::GraphicsApplication app(argc, argv);
app.register_user_main(graphics_main);
return app.exec();
}
72 changes: 43 additions & 29 deletions cpp/examples/Sara/NeuralNetworks/yolo_v4_example.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,38 +37,50 @@ namespace fs = std::filesystem;


// The API.
auto detect_objects(const sara::ImageView<sara::Rgb32f>& image,
auto detect_objects(const sara::ImageView<sara::Rgb8>& image,
sara::Darknet::Network& model)
{
auto& net = model.net;
const auto& input_layer =
dynamic_cast<const sara::Darknet::Input&>(*net.front());

// Resize the image to the network input sizes.
// TODO: optimize later.
const auto image_resized =
sara::resize(image, {input_layer.width(), input_layer.height()});
const auto image_tensor =
sara::tensor_view(image_resized)
.reshape(Eigen::Vector4i{1, image_resized.height(),
image_resized.width(), 3})
.transpose({0, 3, 1, 2});
sara::tic();
const auto image_transposed = sara::tensor_view(image).transpose({2, 0, 1});
static_assert(std::is_same_v<decltype(image_transposed),
const sara::Tensor_<std::uint8_t, 3>>);
sara::toc("Image transpose");

sara::tic();
auto rgb_tensor = image_transposed.cwise_transform(
[](const std::uint8_t& v) { return v / 255.f; });
sara::toc("Image channel conversion");

sara::tic();
auto rgb_tensor_resized = sara::Tensor_<float, 4>{
{1, 3, input_layer.height(), input_layer.width()}};
for (auto i = 0; i < 3; ++i)
{
const auto src = sara::image_view(rgb_tensor[i]);
auto dst = sara::image_view(rgb_tensor_resized[0][i]);
sara::resize_v2(src, dst);
}
sara::toc("Image resize");

// Feed the input to the network.
// TODO: optimize this method to avoid recopying again or better, eliminate
// the input layer.
model.forward(image_tensor);
model.forward(rgb_tensor_resized);

// Accumulate all the detection from each YOLO layer.
auto detections = std::vector<d::YoloBox>{};
for (const auto& layer : net)
{
if (const auto yolo = dynamic_cast<const sara::Darknet::Yolo*>(layer.get()))
{
const auto dets = d::get_yolo_boxes( //
yolo->output[0], //
yolo->anchors, yolo->mask, //
image_resized.sizes(), image.sizes(), //
std::cout << *yolo << std::endl;
const auto dets = d::get_yolo_boxes( //
yolo->output[0], //
yolo->anchors, yolo->mask, //
{rgb_tensor_resized.size(3), rgb_tensor_resized.size(2)}, //
image.sizes(), //
0.25f);
detections.insert(detections.end(), dets.begin(), dets.end());
}
Expand All @@ -88,15 +100,15 @@ auto test_on_image(int argc, char** argv) -> void
#endif

const auto data_dir_path = fs::canonical(fs::path{src_path("data")});
const auto yolov4_tiny_dirpath = data_dir_path / "trained_models";
const auto yolov4_tiny_dirpath =
data_dir_path / "trained_models" / "yolov7-tiny";
const auto image =
argc < 2
? sara::imread<sara::Rgb32f>((data_dir_path / "dog.jpg").string())
: sara::imread<sara::Rgb32f>(argv[1]);
argc < 2 ? sara::imread<sara::Rgb8>((data_dir_path / "dog.jpg").string())
: sara::imread<sara::Rgb8>(argv[1]);
sara::create_window(image.sizes());
sara::display(image);

auto model = sara::Darknet::load_yolov4_tiny_model(yolov4_tiny_dirpath);
auto model = sara::Darknet::load_yolo_model(yolov4_tiny_dirpath, 7, true);

sara::display(image);
const auto dets = detect_objects(image, model);
Expand Down Expand Up @@ -136,8 +148,14 @@ auto test_on_video(int argc, char** argv) -> void
auto frame = video_stream.frame();

const auto data_dir_path = fs::canonical(fs::path{src_path("data")});
const auto yolov4_tiny_dirpath = data_dir_path / "trained_models";
auto model = sara::Darknet::load_yolov4_tiny_model(yolov4_tiny_dirpath);
const auto yolo_version = 4;
const auto is_tiny = false;
auto yolo_name = "yolov" + std::to_string(yolo_version);
if (is_tiny)
yolo_name += "-tiny";
const auto yolo_dirpath = data_dir_path / "trained_models" / yolo_name;
auto model = d::load_yolo_model(yolo_dirpath, yolo_version, is_tiny);

model.profile = false;

sara::create_window(frame.sizes());
Expand All @@ -159,11 +177,7 @@ auto test_on_video(int argc, char** argv) -> void
continue;

sara::tic();
const auto frame32f = video_stream.frame().convert<sara::Rgb32f>();
sara::toc("Color conversion");

sara::tic();
auto dets = detect_objects(frame32f, model);
auto dets = detect_objects(video_stream.frame(), model);
sara::toc("Yolo");

sara::display(frame);
Expand Down
Loading

0 comments on commit fed2729

Please sign in to comment.