Skip to content

Commit

Permalink
Merge pull request #364 from oddkiva/enh-add-nms-in-python
Browse files Browse the repository at this point in the history
ENH: check object detection with YOLO v4 CoreML model.
  • Loading branch information
oddkiva authored Dec 27, 2023
2 parents 5402d28 + 5ffdb24 commit 71174cf
Show file tree
Hide file tree
Showing 4 changed files with 179 additions and 34 deletions.
11 changes: 0 additions & 11 deletions python/oddkiva/sara/sfm/robust_global_translations.py

This file was deleted.

179 changes: 179 additions & 0 deletions python/oddkiva/shakti/inference/coreml/examples/run_yolov4_tiny.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
from collections import namedtuple
from pathlib import Path
from typing import Any

from PIL import Image

import numpy as np

import coremltools as ct

import oddkiva.sara as sara
import oddkiva.shakti.inference.darknet as darknet


THIS_FILE = __file__
SARA_SOURCE_DIR_PATH = Path(THIS_FILE[:THIS_FILE.find('sara') + len('sara')])
SARA_DATA_DIR_PATH = SARA_SOURCE_DIR_PATH / 'data'
SARA_TRAINED_MODEL_DIR_PATH = SARA_SOURCE_DIR_PATH / 'trained_models'
SARA_YOLOV4_MODEL_DIR_PATH = SARA_TRAINED_MODEL_DIR_PATH / 'yolov4-tiny'

YOLO_V4_COREML_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'yolov4-tiny.mlpackage'
YOLO_V4_COCO_CLASSES_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'classes.txt'
assert YOLO_V4_COREML_PATH.exists()
YOLO_V4_CFG_PATH = SARA_YOLOV4_MODEL_DIR_PATH / 'yolov4-tiny.cfg'
assert YOLO_V4_CFG_PATH.exists()

DOG_IMAGE_PATH = SARA_DATA_DIR_PATH / 'dog.jpg'
assert DOG_IMAGE_PATH.exists()


Box = namedtuple('Box', ['x', 'y', 'w', 'h', 'p_object', 'class_id', 'p_class'])


def get_yolo_boxes(yolo_out: np.ndarray, yolo_layers: dict['str': Any],
objectness_thres,
image_ori_sizes, yolo_input_sizes):
mask = yolo_layers['mask']
anchors = yolo_layers['anchors']
_, B, _, H, W = yolo_out.shape

out = yolo_out
rel_x = out[:, :, 0]
rel_y = out[:, :, 1]
log_w = out[:, :, 2]
log_h = out[:, :, 3]
p_objectness = out[:, :, 4]
p_classes = out[:, :, 5:]

yi, xi = np.meshgrid(range(H), range(W), indexing='ij')

w_prior = [anchors[mask[b]][0] for b in range(B)]
h_prior = [anchors[mask[b]][1] for b in range(B)]

sx = image_ori_sizes[1] / yolo_input_sizes[1]
sy = image_ori_sizes[0] / yolo_input_sizes[0]

x = (rel_x + xi) / W * image_ori_sizes[1]
y = (rel_y + yi) / H * image_ori_sizes[0]
w = np.copy(log_w)
h = np.copy(log_h)
for b in range(B):
w[:, b] = np.exp(log_w)[:, b] * w_prior[b] * sx
h[:, b] = np.exp(log_h)[:, b] * h_prior[b] * sy

p_class_idx = np.argmax(p_classes, axis=2)

# Get the 4D indices
object_ids = np.nonzero(p_objectness > objectness_thres)
x = x[object_ids]
y = y[object_ids]
w = w[object_ids]
h = h[object_ids]
x -= 0.5 * w
y -= 0.5 * h
p_objectness = p_objectness[object_ids]
class_ids = p_class_idx[object_ids]
ixs = (object_ids[0], object_ids[1], class_ids, object_ids[2],
object_ids[3])
p_classes = p_classes[ixs]

boxes = np.stack((x, y, w, h, p_objectness, class_ids,
p_classes)).transpose().tolist()
boxes = [Box(*b) for b in boxes]
return boxes

def nms(boxes: list[Box], iou_thres=0.4):
def compare(x: Box, y: Box):
return y.p_object - x.p_object
from functools import cmp_to_key
boxes_sorted = sorted(boxes, key=cmp_to_key(compare))

boxes_filtered = []
for box in boxes_sorted:
if not boxes_filtered:
boxes_filtered.append(box)
continue
x1 = np.array([box.x for box in boxes_filtered])
y1 = np.array([box.y for box in boxes_filtered])
w = np.array([box.w for box in boxes_filtered])
h = np.array([box.h for box in boxes_filtered])
x2 = x1 + w
y2 = y1 + h

inter_x1 = np.maximum(x1, box.x)
inter_y1 = np.maximum(y1, box.y)
inter_x2 = np.minimum(x2, box.x + box.w)
inter_y2 = np.minimum(y2, box.y + box.h)

inter = np.logical_and(inter_x1 <= inter_x2, inter_y1 <= inter_y2)
inter_area = \
(inter_x2 - inter_x1) * (inter_y2 - inter_y1) * \
inter.astype(np.float32)

union_area = w * h + box.w * box.h - inter_area

iou = inter_area / union_area

overlap = np.any(iou > iou_thres)
if not overlap:
boxes_filtered.append(box)

return boxes_filtered


def detect(yolo_model, yolo_layers, image_ori, yolo_input_sizes):
image_ori_sizes = np.asarray(image_ori).shape[:2]
image_resized = image_ori.resize(yolo_input_sizes,
resample=Image.Resampling.LANCZOS)

yolo_outs = yolo_model.predict({'image': image_resized})
yolo_outs = [yolo_outs[f'yolo_{i}'] for i in range(len(yolo_layers))]

yolo_boxes = [get_yolo_boxes(yolo_outs[i], yolo_layers[i], 0.4,
image_ori_sizes, yolo_input_sizes)
for i in range(len(yolo_layers))]
yolo_boxes = sum(yolo_boxes, [])

yolo_boxes = nms(yolo_boxes)

return yolo_boxes


def draw_detection(
b: Box,
class_name: str,
color: tuple[int, int, int],
font_size: int = 20
) -> None:

sara.draw_rect((b.x, b.y), (b.w, b.h), (255, 0, 0), 3)
sara.draw_text((b.x, b.y - 4), class_name, color, font_size, 0, False, True, False)

def user_main():
yolo_model = ct.models.CompiledMLModel(str(YOLO_V4_COREML_PATH))
yolo_cfg = darknet.Config()
yolo_cfg.read(YOLO_V4_CFG_PATH)
yolo_input_sizes = (yolo_cfg._metadata['width'], yolo_cfg._metadata['height'])
yolo_layers = [layer['yolo'] for layer in yolo_cfg._model
if 'yolo' in layer.keys()]
with open(YOLO_V4_COCO_CLASSES_PATH, 'r') as fp:
yolo_classes = [l.strip(' \n') for l in fp.readlines() if l]
print(yolo_classes)

image_ori = Image.open(DOG_IMAGE_PATH)

yolo_boxes = detect(yolo_model, yolo_layers, image_ori, yolo_input_sizes)

sara.create_window(*image_ori.size)
sara.set_antialiasing(True)
sara.draw_image(np.asarray(image_ori))
for b in yolo_boxes:
class_name = yolo_classes[int(b.class_id)]
draw_detection(b, class_name, (191, 0, 0))

sara.get_key()


if __name__ == '__main__':
sara.run_graphics(user_main)

This file was deleted.

0 comments on commit 71174cf

Please sign in to comment.