Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Mixtral] Simplify indices calculation in moe layer #172

Merged
merged 1 commit into from
Jan 24, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 21 additions & 56 deletions mlc_llm/relax_model/mixtral.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,66 +210,31 @@ def get_indices(
from tvm import relax
from tvm.script import tir as T

@T.prim_func
def get_flattened_expert_indices_scheduled(
var_cumsum_colwise_flattened: T.handle,
var_expert_indices: T.handle,
var_flattened_expert_indices: T.handle,
):
T.func_attr({"tir.is_scheduled": 1})
batch_size = T.SizeVar("batch_size", "int32")
cumsum_flattened_length = T.SizeVar("cumsum_flattened_length", "int32")
TX = 1024
experts_per_tok = T.int32(self.num_experts_per_tok)

cumsum_colwise_flattened = T.match_buffer(
var_cumsum_colwise_flattened, shape=[cumsum_flattened_length], dtype="int32"
)
expert_indices = T.match_buffer(
var_expert_indices, shape=[batch_size, self.num_experts_per_tok], dtype="int32"
)
flattened_expert_indices = T.match_buffer(
var_flattened_expert_indices,
shape=[batch_size * self.num_experts_per_tok],
dtype="int32",
)
@T.prim_func(private=True)
def _func(var_cumsum: T.handle, var_expert_indices: T.handle, var_indices: T.handle):
T.func_attr({"tir.is_scheduled": 1, "tir.noalias": True})
batch_size = T.SizeVar("batch_size", "int32")
cumsum_len = T.SizeVar("cumsum_len", "int32") # [experts_per_tok * batch_size]
cumsum = T.match_buffer(var_cumsum, [cumsum_len], "int32")
expert_indices = T.match_buffer(var_expert_indices, [batch_size, experts_per_tok], "int32")
indices = T.match_buffer(var_indices, [batch_size * experts_per_tok], "int32")
for bj_o in T.thread_binding(0, T.ceildiv(batch_size * experts_per_tok, TX), "blockIdx.x"):
for bj_i in T.thread_binding(0, TX, "threadIdx.x"):
with T.block("indices"):
T.reads(expert_indices[:, :], cumsum[:])
T.writes(indices[:])
if bj_o * TX + bj_i < batch_size * experts_per_tok:
b: T.int32 = T.floordiv(bj_o * TX + bj_i, experts_per_tok)
j: T.int32 = T.floormod(bj_o * TX + bj_i, experts_per_tok)
e: T.int32 = expert_indices[b, j]
indices[cumsum[e * batch_size + b] - 1] = b * experts_per_tok + j

for io in T.thread_binding(
0, T.ceildiv(cumsum_flattened_length, T.int32(1024)), "blockIdx.x"
):
for ii in T.thread_binding(
0, T.min(cumsum_flattened_length, T.int32(1024)), "threadIdx.x"
):
with T.block("get_indices"):
vi = T.axis.spatial(cumsum_flattened_length, io * T.int32(1024) + ii)
T.where(io * T.int32(1024) + ii < cumsum_flattened_length)
T.reads(
cumsum_colwise_flattened[vi - 1 : vi - 1 + 2],
expert_indices[:, 0 : self.num_experts_per_tok],
)
T.writes(flattened_expert_indices[:])
expert_idx = T.alloc_buffer(shape=(), dtype="int32", scope="local")
if cumsum_colwise_flattened[vi] > T.if_then_else(
vi == 0, T.int32(0), cumsum_colwise_flattened[vi - 1]
):
idx: T.SizeVar("idx", "int32") = cumsum_colwise_flattened[vi] - 1
instance_id: T.SizeVar("instance_id", "int32") = T.truncmod(
vi, batch_size
)
expert_id: T.SizeVar("expert_id", "int32") = T.truncdiv(vi, batch_size)
for j in T.serial(0, self.num_experts_per_tok):
with T.block("select_expert"):
vj = T.axis.spatial(self.num_experts_per_tok, j)
vinstance_id = T.axis.spatial(batch_size, instance_id)
vexpert_id = T.axis.spatial(
T.truncdiv(cumsum_flattened_length, batch_size), expert_id
)
if expert_indices[vinstance_id, vj] == vexpert_id:
expert_idx[()] = vj
flattened_expert_indices[idx] = (
instance_id * self.num_experts_per_tok + expert_idx[()]
)

bb = relax.BlockBuilder.current()
gvar = bb.add_func(get_flattened_expert_indices_scheduled, "get_flattened_expert_indices")
gvar = bb.add_func(_func, "get_flattened_expert_indices")
return bb.emit(
relax.call_tir(
gvar,
Expand Down