Skip to content

A Python implementation and test code of the Merkle Hash Tree Algorithm

Notifications You must be signed in to change notification settings

nymble/merkletree

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 

Repository files navigation

Merkle Hash Trees

An implementation of a binary Merkle Hash Tree.

                                            0,5
                                           __|__
                                          /     \
       0,3            0,4               0,4     4,5   
      __|__          __|__             __|__     |
     /     \        /     \           /     \   d4
   0,2     2,3    0,2     2,4       0,2     2,4
  /   \     |     / \     / \       / \     / \
0,1   1,2  d2   0,1 1,2 2,3 3,4   0,1 1,2 2,3 3,4
 |     |         |   |   |   |     |   |   |   |
d0    d1        d0  d1  d2  d3    d0  d1  d2  d3
  
              0,6                         0,7
           ____|____                 ______|______
          /         \               /             \   
        0,4         4,6           0,4             4,7            
       __|__        / \          __|__           __|__
      /     \     4,5 5,6       /     \         /     \
    0,2     2,4    |   |      0,2     2,4     4,6     6,7      
    / \     / \   d4  d5      / \     / \     / \      |
  0,1 1,2 2,3 3,4           0,1 1,2 2,3 3,4 4,5 5,6   d6       
   |   |   |   |             |   |   |   |   |   |
  d0  d1  d2  d3            d0  d1  d2  d3  d4  d5  

Each node in the tree can be identified as a tuple representing the range of values covered by the hash.

For a Merkle Hash Tree with n leaf nodes and each i,j node identified by mth(i,j):

  • the root hash, MTH = mth(0,n)
  • the leaf hash for data entry di with 0<=i<n is mth(i,i+1)
  • leaf values are formed by hashing the input string d(i)
    • mth(i,i+1) = hash( 0 | d(i))
    • This is a hash of the single octet with value 0 concatenated with the ith input string d(i)
  • every non-leaf node mth(k1,k2) has the property that
    • mth(k1,k2) = hash( 1 | mth(k1,k1+k) | mth(k1+k,k2) )
    • where k = k1+lp2(k2-k1) , and lp2 is the largest power of 2 < (k2-k1)
  • new entries are added to the tree by creating a leaf node:
    • mth(i,i+1) = hash( 0 | d(i))
  • root hash is calculated when needed by:
    • mth(0,i+1) = hash( 1 + mth(k1,k) + mth(k,k2)) and recursively creating any mth(i,j) needed for the new root hash
  • an empty tree has a root hash value formed by hashing a null string, hash('')

For a merkle tree with a root value mth(0,7) ( a tree with seven entries), the audit paths are:

  • The audit path for d0 is [mth(1,2), mth(2,4), mth(4,7)]
  • The audit path for d3 is [mth(2,3), mth(0,2), mth(4,7)]
  • The audit path for d4 is [mth(5,6), mth(6,7), mth(0,4)]
  • The audit path for d6 is [mth(4,6), mth(0,4)]

This implementation is based on the specifics of the algorithm described in: https://tools.ietf.org/html/draft-laurie-pki-sunlight-02

About

A Python implementation and test code of the Merkle Hash Tree Algorithm

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages