Skip to content

nuxeo-sandbox/nuxeo-aws-bedrock-connector

Repository files navigation

Description

A plugin that provides a simple and easy to use integration pattern between AWS Bedrock and the Nuxeo Platform.

How to build

git clone https://github.com/nuxeo-sandbox/nuxeo-aws-bedrock-connector
cd nuxeo-aws-bedrock-connector
mvn clean install -DskipTests

Features

Automation API

The integration between the Nuxeo Platform and Bedrock is meant to be as versatile as possible and leverages Nuxeo's automation framework.

Run Execution

Bedrock.Invoke Operation

The operation Bedrock.Invoke invokes the Bedrock API.

Parameters:

Name Description Type Required Default value
modelName The model technical name string true
jsonPayload The json payload corresponding to the model string true
useCache Use cached response boolean false false

Output: A string Blob containing the Bedrock REST API JSON response. Use its getString() method to get the JSON String (see Automation Scripting example below)

Example on localhost:

curl --location 'http://localhost:8080/nuxeo/api/v1/automation/Bedrock.Invoke' \
--header 'Content-Type: application/json' \
--header 'Authorization: Basic ...' \
--data '{
    "params": {
        "modelName":"amazon.titan-embed-text-v2:0",
        "jsonPayload": "{\"inputText\":\"Hi Bedrock. Please give me the embedding for this text\"}"
    }
}'

Base64Helper Automation Helper

The plugin also provides the Base64Helper Automation Helper, that allows for creating the Base64 representation of a blob or a String:

  • Base64Helper.blob2Base64(aBlob)
  • Base64Helper.string2Base64(aString)

(See Automation Script example below)

Automation Script Example: Describe an Image

function run(input, params) {
  // Get a rendition (don't send a 300MB Photoshop))
  var blob = Picture.GetView(input, {'viewName': 'FullHD'});
  // Encode with the helper
  var base64 = Base64Helper.blob2Base64(blob);
  // Prepare the call to Bedrock
  var payload = {
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "type": "image",
            "source": {
              "type": "base64",
              "media_type": "image/jpeg",
              "data": base64
            }
          },
          {
            "type": "text",
            "text": "Describe the content of the image"
          }
        ]
      }
    ],
    "max_tokens": 512,
    "anthropic_version": "bedrock-2023-05-31"
  };
  // Call the operation
  var responseBlob = Bedrock.Invoke(null, {
    'jsonPayload': JSON.stringify(payload),
    'modelName': "anthropic.claude-3-sonnet-20240229-v1:0"
  });
  // Get the result
  var response = JSON.parse(responseBlob.getString());
  input["dc:description"] = response.content[0].text;
  
  input = Document.Save(input, {});

  return input;
}

The prompt could be parametrized. "Describe shortly the content of the image". And/or in another language "Décris de façon succinte le contenu de l'image", etc. The model used (here, anthropic.claude-3-sonnet-20240229-v1:0, also could be parametrized in the chain.)

Vector Search

Vector search enables use cases such as semantic search and RAG. A sample configuration template is provided in this plugin

Configuration

This feature is implemented only for OpenSearch 1.3.x. In order to use the feature, knn must be enabled at the index level. This can only be done with a package configuration template. A sample index configuration is available here

Vector fields must be explicitly declared in the index mapping.

Important

The dimension property must correspond to the embbedings size (see below, "Embedding generation")

{
  "embedding:text": {
    "type": "knn_vector",
    "dimension": 1024,
    "method": {
      "name": "hnsw",
      "space_type": "l2",
      "engine": "nmslib",
      "parameters": {
        "ef_construction": 128,
        "m": 24
      }
    }
  },
  "embedding:image": {
    "type": "knn_vector",
    "dimension": 1024,
    "method": {
      "name": "hnsw",
      "space_type": "l2",
      "engine": "nmslib",
      "parameters": {
        "ef_construction": 128,
        "m": 24
      }
    }
  }
}

This can be done by overriding the whole mapping configuration in a package configuration template or by using Nuxeo Studio.

Embedding generation

Embbedings can be generated using event handlers and automation scripts. Below is an example of generating embeddings for images using AWS Titan multimodal model.

function run(input, params) {

  var blob = Picture.GetView(input, {
    'viewName': 'FullHD'
  });

  var base64 = Base64Helper.blob2Base64(blob);

  // Notice the outputEmbeddingLength of 1024, matching the "dimension" property of the index
  var payload = {
    "inputImage": base64,
    "embeddingConfig": {
     "outputEmbeddingLength": 1024
     }
  };

  var responseBlob = Bedrock.Invoke(null, {
    'jsonPayload': JSON.stringify(payload),
    'modelName': 'amazon.titan-embed-image-v1',
    'useCache': true
  });

  var response = JSON.parse(responseBlob.getString());

  input['embedding:image'] = response.embedding;

  input = Document.Save(input, {});

  return input;
}

Vector Search

This plugin includes an implementation of the pageprovider interface that bring vector search capabilities to the Nuxeo search API. The pageprovider exposes several named parameters:

Named Parameter Description Type Required Default value
vector_index The vector field name to use for search string true
vector_value The input vector string false
input_text A text string can be passed instead of a vector string false
embedding_automation_processor The automation chain/script to use to convert input_text to a vector embedding boolean false
k The k value for knn integer false 10
min_score The min_score for results the a hit must satisfied float false 0.4

The search input is either vector_value or the combination input_text and embedding_automation_processor. For the latter, the model used to generate the embedding must be same as the model used to generate the embedding vectors for vector_index

Here's an example of call

curl 'http://localhost:8080/nuxeo/api/v1/search/pp/simple-vector-search/execute?input_text=japanese%20kei%20car&vector_index=embedding%3Aimage&embedding_automation_processor=javascript.text2embedding&k=10' \
  -H 'Content-Type: application/json' \
  -H 'accept: text/plain,application/json, application/json' \

How to run

Configuration

The following nuxeo.conf properties are available to configure the plugin

Property name description
nuxeo.aws.bedrock.region The region to use (OPTIONAL)

Run the sample config locally

First, create the env file with the CLID and the MP dependencies

cat << EOF > .env
NUXEO_PACKAGES=nuxeo-web-ui
NUXEO_CLID=<YOUR_CLID>

Then, set the AWS credentials

aws sso login
eval "$(aws configure export-credentials --format env)"
export AWS_REGION="your_region"

Or if you run on MS Windows with powershell:

aws sso login
aws configure export-credentials --format powershell | Invoke-Expression
$Env:AWS_REGION="your_region"

Finally, start the docker compose stack

docker compose up -d

Support

These features are not part of the Nuxeo Production platform.

These solutions are provided for inspiration and we encourage customers to use them as code samples and learning resources.

This is a moving project (no API maintenance, no deprecation process, etc.) If any of these solutions are found to be useful for the Nuxeo Platform in general, they will be integrated directly into platform, not maintained here.

Nuxeo Marketplace

here

License

Apache License, Version 2.0

About Nuxeo

Nuxeo Platform is an open source Content Services platform, written in Java. Data can be stored in both SQL & NoSQL databases.

The development of the Nuxeo Platform is mostly done by Nuxeo employees with an open development model.

The source code, documentation, roadmap, issue tracker, testing, benchmarks are all public.

Typically, Nuxeo users build different types of information management solutions for document management, case management, and digital asset management, use cases. It uses schema-flexible metadata & content models that allows content to be repurposed to fulfill future use cases.

More information is available at www.nuxeo.com.

About

A connector for AWS Bedrock

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published