Skip to content

Commit

Permalink
Add ComputeEngine Property for choosing Engine
Browse files Browse the repository at this point in the history
This PR add ComputeEngine Enum Property.
Enum elements are "cpu", "gpu", "qnn" for now.
The property format is "engine=qnn".

**Self evaluation:**
1. Build test:	 [X]Passed [ ]Failed [ ]Skipped
2. Run test:	 [X]Passed [ ]Failed [ ]Skipped

Signed-off-by: jijoong.moon <[email protected]>
  • Loading branch information
jijoongmoon committed Jan 2, 2025
1 parent 3ac9404 commit 5a11693
Show file tree
Hide file tree
Showing 9 changed files with 130 additions and 94 deletions.
9 changes: 9 additions & 0 deletions api/ccapi/include/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,15 @@ enum class ExecutionMode {
VALIDATE /** Validate mode, label is necessary */
};

/**
* @brief Enumeration of layer compute engine
*/
enum LayerComputeEngine {
CPU, /**< CPU as the compute engine */
GPU, /**< GPU as the compute engine */
QNN, /**< QNN as the compute engine */
};

/**
* @brief Get the version of NNTrainer
*/
Expand Down
63 changes: 24 additions & 39 deletions api/ccapi/include/layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -114,14 +114,6 @@ enum LayerType {
LAYER_UNKNOWN = ML_TRAIN_LAYER_TYPE_UNKNOWN /**< Unknown */
};

/**
* @brief Enumeration of layer compute engine
*/
enum LayerComputeEngine {
CPU, /**< CPU as the compute engine */
GPU, /**< GPU as the compute engine */
};

/**
* @class Layer Base class for layers
* @brief Base class for all layers
Expand Down Expand Up @@ -261,16 +253,14 @@ class Layer {
*/
std::unique_ptr<Layer>
createLayer(const LayerType &type,
const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU);
const std::vector<std::string> &properties = {});

/**
* @brief Factory creator with constructor for layer
*/
std::unique_ptr<Layer>
createLayer(const std::string &type,
const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU);
const std::vector<std::string> &properties = {});

/**
* @brief General Layer Factory function to register Layer
Expand Down Expand Up @@ -343,37 +333,35 @@ DivideLayer(const std::vector<std::string> &properties = {}) {
/**
* @brief Helper function to create fully connected layer
*/
inline std::unique_ptr<Layer> FullyConnected(
const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_FC, properties, compute_engine);
inline std::unique_ptr<Layer>
FullyConnected(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_FC, properties);
}

/**
* @brief Helper function to create Swiglu layer
*/
inline std::unique_ptr<Layer>
Swiglu(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_SWIGLU, properties, compute_engine);
Swiglu(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_SWIGLU, properties);
}

/**
* @brief Helper function to create RMS normalization layer for GPU
*/
inline std::unique_ptr<Layer>
RMSNormCl(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::GPU) {
return createLayer(LayerType::LAYER_RMSNORM, properties, compute_engine);
}
// /**
// * @brief Helper function to create RMS normalization layer for GPU
// */
// inline std::unique_ptr<Layer>
// RMSNormCl(const std::vector<std::string> &properties = {},
// const LayerComputeEngine &compute_engine = LayerComputeEngine::GPU)
// {
// return createLayer(LayerType::LAYER_RMSNORM, properties, compute_engine);
// }

/**
* @brief Helper function to create Transpose layer
*/
inline std::unique_ptr<Layer>
Transpose(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_TRANSPOSE, properties, compute_engine);
Transpose(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_TRANSPOSE, properties);
}

/**
Expand Down Expand Up @@ -428,27 +416,24 @@ Flatten(const std::vector<std::string> &properties = {}) {
* @brief Helper function to create reshape layer
*/
inline std::unique_ptr<Layer>
Reshape(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_RESHAPE, properties, compute_engine);
Reshape(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_RESHAPE, properties);
}

/**
* @brief Helper function to create addition layer
*/
inline std::unique_ptr<Layer>
Addition(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_ADDITION, properties, compute_engine);
Addition(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_ADDITION, properties);
}

/**
* @brief Helper function to create concat layer
*/
inline std::unique_ptr<Layer>
Concat(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_CONCAT, properties, compute_engine);
Concat(const std::vector<std::string> &properties = {}) {
return createLayer(LayerType::LAYER_CONCAT, properties);
}

/**
Expand Down
10 changes: 4 additions & 6 deletions api/ccapi/src/factory.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,18 +31,16 @@ namespace ml {
namespace train {

std::unique_ptr<Layer> createLayer(const LayerType &type,
const std::vector<std::string> &properties,
const LayerComputeEngine &compute_engine) {
return nntrainer::createLayerNode(type, properties, compute_engine);
const std::vector<std::string> &properties) {
return nntrainer::createLayerNode(type, properties);
}

/**
* @brief Factory creator with constructor for layer
*/
std::unique_ptr<Layer> createLayer(const std::string &type,
const std::vector<std::string> &properties,
const LayerComputeEngine &compute_engine) {
return nntrainer::createLayerNode(type, properties, compute_engine);
const std::vector<std::string> &properties) {
return nntrainer::createLayerNode(type, properties);
}

std::unique_ptr<Optimizer>
Expand Down
24 changes: 23 additions & 1 deletion nntrainer/layers/common_properties.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
#include <string>

#include <base_properties.h>
#include <common.h>
#include <connection.h>
#include <tensor.h>
#include <tensor_wrap_specs.h>
Expand Down Expand Up @@ -945,12 +946,33 @@ struct ActivationTypeInfo {
* @brief Activation Enumeration Information
*
*/
class Activation final : public EnumProperty<ActivationTypeInfo> {
class Activation final
: public EnumProperty<nntrainer::props::ActivationTypeInfo> {
public:
using prop_tag = enum_class_prop_tag;
static constexpr const char *key = "activation";
};

/**
* @brief Enumeration of Run Engine type
*/
struct ComputeEngineTypeInfo {
using Enum = ml::train::LayerComputeEngine;
static constexpr std::initializer_list<Enum> EnumList = {Enum::CPU, Enum::GPU,
Enum::QNN};
static constexpr const char *EnumStr[] = {"cpu", "gpu", "qnn"};
};

/**
* @brief ComputeEngine Enumeration Information
*
*/
class ComputeEngine final : public EnumProperty<ComputeEngineTypeInfo> {
public:
using prop_tag = enum_class_prop_tag;
static constexpr const char *key = "engine";
};

/**
* @brief HiddenStateActivation Enumeration Information
*
Expand Down
75 changes: 53 additions & 22 deletions nntrainer/layers/layer_node.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -130,20 +130,49 @@ class SharedFrom : public Name {
*/
LayerNode::~LayerNode() = default;

/**
* @brief get the compute engine property from property string vector
* : default is CPU
* @return LayerComputeEngine Enum : CPU, GPU, QNN
*
*/
ml::train::LayerComputeEngine
getComputeEngine(const std::vector<std::string> &props) {
for (auto &prop : props) {
std::string key, value;
int status = nntrainer::getKeyValue(prop, key, value);
if (nntrainer::istrequal(key, "engine")) {
constexpr const auto data =
std::data(props::ComputeEngineTypeInfo::EnumList);
for (uint i = 0; i < props::ComputeEngineTypeInfo::EnumList.size(); ++i) {
if (nntrainer::istrequal(value.c_str(),
props::ComputeEngineTypeInfo::EnumStr[i])) {
return data[i];
}
}
}
}

return ml::train::LayerComputeEngine::CPU;
}

/**
* @brief Layer factory creator with constructor
*/
std::unique_ptr<LayerNode>
createLayerNode(const ml::train::LayerType &type,
const std::vector<std::string> &properties,
const ml::train::LayerComputeEngine &compute_engine) {
const std::vector<std::string> &properties) {

if (getComputeEngine(properties) == ml::train::LayerComputeEngine::GPU) {
#ifdef ENABLE_OPENCL
if (compute_engine == ml::train::LayerComputeEngine::GPU) {
auto &cc = nntrainer::ClContext::Global();
return createLayerNode(cc.createObject<nntrainer::Layer>(type), properties,
compute_engine);
}
return createLayerNode(cc.createObject<nntrainer::Layer>(type), properties);
#else
throw std::invalid_argument(
"opencl layer creation without enable-opencl option");
#endif
}

auto &ac = nntrainer::AppContext::Global();
return createLayerNode(ac.createObject<nntrainer::Layer>(type), properties);
}
Expand All @@ -153,15 +182,18 @@ createLayerNode(const ml::train::LayerType &type,
*/
std::unique_ptr<LayerNode>
createLayerNode(const std::string &type,
const std::vector<std::string> &properties,
const ml::train::LayerComputeEngine &compute_engine) {
const std::vector<std::string> &properties) {

if (getComputeEngine(properties) == ml::train::LayerComputeEngine::GPU) {
#ifdef ENABLE_OPENCL
if (compute_engine == ml::train::LayerComputeEngine::GPU) {
auto &cc = nntrainer::ClContext::Global();
return createLayerNode(cc.createObject<nntrainer::Layer>(type), properties,
compute_engine);
}
return createLayerNode(cc.createObject<nntrainer::Layer>(type), properties);
#else
throw std::invalid_argument(
"opencl layer creation without enable-opencl option");
#endif
}

auto &ac = nntrainer::AppContext::Global();
return createLayerNode(ac.createObject<nntrainer::Layer>(type), properties);
}
Expand All @@ -171,16 +203,11 @@ createLayerNode(const std::string &type,
*/
std::unique_ptr<LayerNode>
createLayerNode(std::unique_ptr<nntrainer::Layer> &&layer,
const std::vector<std::string> &properties,
const ml::train::LayerComputeEngine &compute_engine) {
const std::vector<std::string> &properties) {
auto lnode = std::make_unique<LayerNode>(std::move(layer));

lnode->setProperty(properties);

if (compute_engine == ml::train::LayerComputeEngine::GPU) {
lnode->setComputeEngine(compute_engine);
}

return lnode;
}

Expand All @@ -192,10 +219,10 @@ LayerNode::LayerNode(std::unique_ptr<nntrainer::Layer> &&l) :

output_connections(),
run_context(nullptr),
layer_node_props(
new PropsType(props::Name(), props::Distribute(), props::Trainable(), {},
{}, props::SharedFrom(), props::ClipGradByGlobalNorm(),
props::Packed(), props::LossScaleForMixed())),
layer_node_props(new PropsType(
props::Name(), props::Distribute(), props::Trainable(), {}, {},
props::SharedFrom(), props::ClipGradByGlobalNorm(), props::Packed(),
props::LossScaleForMixed(), props::ComputeEngine())),
layer_node_props_realization(
new RealizationPropsType(props::Flatten(), props::Activation())),
loss(new props::Loss()),
Expand Down Expand Up @@ -670,6 +697,10 @@ InitLayerContext LayerNode::finalize(const std::vector<TensorDim> &input_dims,
if (!std::get<props::LossScaleForMixed>(*layer_node_props).empty())
loss_scale = std::get<props::LossScaleForMixed>(*layer_node_props).get();

if (!std::get<props::ComputeEngine>(*layer_node_props).empty()) {
compute_engine = std::get<props::ComputeEngine>(*layer_node_props).get();
}

if (!std::get<props::Packed>(*layer_node_props).empty()) {
bool isPacked = std::get<props::Packed>(*layer_node_props);
if (!isPacked) {
Expand Down
24 changes: 10 additions & 14 deletions nntrainer/layers/layer_node.h
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ class InputConnection;
class ClipGradByGlobalNorm;
class Packed;
class LossScaleForMixed;
class ComputeEngine;
} // namespace props

/**
Expand Down Expand Up @@ -994,11 +995,12 @@ will also contain the properties of the layer. The properties will be copied
upon final creation. Editing properties of the layer after init will not the
properties in the context/graph unless intended. */

using PropsType = std::tuple<props::Name, props::Distribute, props::Trainable,
std::vector<props::InputConnection>,
std::vector<props::InputShape>,
props::SharedFrom, props::ClipGradByGlobalNorm,
props::Packed, props::LossScaleForMixed>;
using PropsType =
std::tuple<props::Name, props::Distribute, props::Trainable,
std::vector<props::InputConnection>,
std::vector<props::InputShape>, props::SharedFrom,
props::ClipGradByGlobalNorm, props::Packed,
props::LossScaleForMixed, props::ComputeEngine>;

using RealizationPropsType = std::tuple<props::Flatten, props::Activation>;
/** these realization properties results in addition of new layers, hence
Expand Down Expand Up @@ -1070,9 +1072,7 @@ properties in the context/graph unless intended. */
*/
std::unique_ptr<LayerNode>
createLayerNode(const ml::train::LayerType &type,
const std::vector<std::string> &properties = {},
const ml::train::LayerComputeEngine &compute_engine =
ml::train::LayerComputeEngine::CPU);
const std::vector<std::string> &properties = {});

/**
* @brief LayerNode creator with constructor
Expand All @@ -1082,9 +1082,7 @@ createLayerNode(const ml::train::LayerType &type,
*/
std::unique_ptr<LayerNode>
createLayerNode(const std::string &type,
const std::vector<std::string> &properties = {},
const ml::train::LayerComputeEngine &compute_engine =
ml::train::LayerComputeEngine::CPU);
const std::vector<std::string> &properties = {});

/**
* @brief LayerNode creator with constructor
Expand All @@ -1095,9 +1093,7 @@ createLayerNode(const std::string &type,
*/
std::unique_ptr<LayerNode>
createLayerNode(std::unique_ptr<nntrainer::Layer> &&layer,
const std::vector<std::string> &properties,
const ml::train::LayerComputeEngine &compute_engine =
ml::train::LayerComputeEngine::CPU);
const std::vector<std::string> &properties);

} // namespace nntrainer
#endif // __LAYER_NODE_H__
2 changes: 1 addition & 1 deletion nntrainer/utils/node_exporter.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ void Exporter::saveTflResult(
std::vector<props::InputConnection>,
std::vector<props::InputShape>, props::SharedFrom,
props::ClipGradByGlobalNorm, props::Packed,
props::LossScaleForMixed> &props,
props::LossScaleForMixed, props::ComputeEngine> &props,
const LayerNode *self) {
createIfNull(tf_node);
tf_node->setLayerNode(*self);
Expand Down
Loading

0 comments on commit 5a11693

Please sign in to comment.