Skip to content

Commit

Permalink
Create ai_job_concepts.md
Browse files Browse the repository at this point in the history
  • Loading branch information
nivu authored Apr 23, 2024
1 parent 656b312 commit cb5ba52
Showing 1 changed file with 124 additions and 0 deletions.
124 changes: 124 additions & 0 deletions ai_job_concepts.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@

### **Module 1: Python Programming for Data Science**

#### **Sub-module 1.1: Python Basics**
- Data types and variables
- Control structures (if-else, for loops, while loops)
- Functions and lambda expressions
- Exception handling

#### **Sub-module 1.2: Advanced Python**
- List comprehensions
- Generators and iterators
- Decorators
- Context managers

#### **Sub-module 1.3: Python Libraries**
- NumPy (arrays, matrix operations)
- pandas (dataframes, series, data manipulation)
- Matplotlib (basic plotting, figures, and axes)
- seaborn (statistical data visualization)

---

### **Module 2: Data Management and Manipulation**

#### **Sub-module 2.1: Data Cleaning**
- Handling missing data
- Data type conversion
- Normalizing and scaling

#### **Sub-module 2.2: Data Exploration**
- Descriptive statistics
- Correlation analysis
- Outlier detection

#### **Sub-module 2.3: Data Wrangling**
- Merging, joining, and concatenating data
- Grouping and aggregation
- Pivot tables and cross-tabulation

---

### **Module 3: Machine Learning**

#### **Sub-module 3.1: Fundamentals of ML**
- Supervised vs. unsupervised learning
- Overfitting and underfitting
- Train-test split
- Cross-validation

#### **Sub-module 3.2: Regression Algorithms**
- Linear regression
- Polynomial regression
- Ridge and Lasso regression

#### **Sub-module 3.3: Classification Algorithms**
- Logistic regression
- Decision Trees
- Random Forests
- Support Vector Machines (SVM)
- k-Nearest Neighbors (k-NN)

#### **Sub-module 3.4: Unsupervised Algorithms**
- k-means clustering
- Hierarchical clustering
- Principal Component Analysis (PCA)

#### **Sub-module 3.5: Ensemble Methods**
- Bagging
- Boosting
- Stacking

#### **Sub-module 3.6: Model Evaluation**
- Confusion matrix
- ROC-AUC
- Precision-Recall
- F1 Score

---

### **Module 4: Deep Learning**

#### **Sub-module 4.1: Neural Networks Basics**
- Perceptrons
- Activation functions (ReLU, sigmoid, tanh)
- Feedforward neural networks
- Backpropagation and gradient descent

#### **Sub-module 4.2: Advanced Neural Networks**
- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory networks (LSTMs)
- Autoencoders
- Generative Adversarial Networks (GANs)

#### **Sub-module 4.3: Frameworks and Tools**
- TensorFlow
- Keras
- PyTorch

#### **Sub-module 4.4: Model Optimization and Deployment**
- Regularization techniques
- Hyperparameter tuning (Grid search, Random search)
- Model deployment (Flask, Docker)

---

### **Module 5: Special Topics**

#### **Sub-module 5.1: Natural Language Processing (NLP)**
- Text preprocessing (tokenization, stemming, lemmatization)
- Word embeddings (Word2Vec, GloVe)
- Sentiment analysis
- Named Entity Recognition (NER)

#### **Sub-module 5.2: Computer Vision**
- Image processing basics
- Object detection
- Image classification

#### **Sub-module 5.3: Time Series Analysis**
- ARIMA models
- Seasonal decomposition
- Forecasting

0 comments on commit cb5ba52

Please sign in to comment.