Skip to content

Explorative analyses on SAM study data

License

Notifications You must be signed in to change notification settings

mscsep/SAM_explore

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Index

_ README.md: an overview of the project
|___ data: data files used in the project
|___ processed_data: intermediate files from the analysis
|___ results: results of the analyses (data, tables, figures)
|___ R: contains all R-code in the project

SAMexplore

Questionnaire scoring, preprocessing, and explorative analyses on SAM study data

The results of this project are described in: Sep MSC, Joëls M, Geuze E. Individual differences in the encoding of contextual details following acute stress: An explorative study. Eur J Neurosci. 2020; ejn.15067. doi:10.1111/ejn.15067

Note, source only works properly in a R markdown file, if Rstudio > Tools > Global options > R Markdown > evaluate chunks in directory = project. (see) AND if source is not in 'setup' chunk

Scoring of the personality, life events, and state questionnaires

  • script: SAM_netq_calculate_scores.RMD and SAM_netq_function_scoring.r
  • input:
    • SAM Questionnaire Masterfile.sav
    • SAM_MCT.csv
    • SAM_FGT.csv
    • SAM_Codes_Task_Protocol_Versions.csv
  • actions: descriptive statistics MCT and FGT papers of the SAM study and questionnaire scoring:
    • symptoms: SCL90
    • (early) life adversity) CTQ, LSCR
    • Personality: STAI-T, s-TCI, HEXACO
    • emotional state: VAS, STAI-S, PANAS
  • output dataset: SAM_netq_scored.rds

Merge questionnaire, endocrine, memory data

  • script: SAMexplore_data_merge.R
  • input:
    • Questionnaires: SAM_netq_scored.rds
    • Endocrine: sAA_sCORT_condition_dataset.rds (available via this repository)
    • Memory: SAM_MCT.csv & SAM_FGT.csv
  • actions: merge data from different sources and calculate context-memory summary scores (neutral, emotional & fearful)
  • output: SAM_complete.rds

Imputation of missing values

  • script: SAMexplore_imputation.Rmd
  • input: SAM_complete.rds
  • actions: (passive) imputations of missing values
  • output:
    • imputed data: Direct imputation is saved in impTS.rds, Passive imputation is saved in pas.imp.rds
    • combined imputed data: implist.rds

Preprocessing for analyses in the SAM explore project

  1. Variable reduction: AUC
  • script: SAMexplore_AUC_calculations.RMD
  • input:
    • implist.rds
    • SAM_Timepoints_reactivity_measures.csv
  • actions: Calculation AUCg and AUCi for repeated measures of emotional/stress state (self-report & endocrine)
  • output: SAMimputed_with.AUC.variables.RDS
  1. Standardization: Z-scores
  • script: SAMexplore_prepare.for.analyses.r
  • input: SAMimputed_with.AUC.variables.RDS
  • actions:
    • variable selection
    • z-scrore transformation (of all numeric variables)
    • Calculation cumulative stress exposure score Kok & Sep et al. 2016
    • split data per experimental condition
  • output:
    • lists with imputed data per experimental condition:
      • No-stress group: imp.nos
      • Immediate stress group: imp.ims
      • Delayed stress group: imp.des
    • functions to prepare boruta/rf data

Descriptive tables

  • script: SAMexplore_descriptive_tables.Rmd
  • input: processed_data/implist.withRAW11.rds (created with preparation code in SAMexplore_imputation.Rmd, and SAMexplore_AUC_calculations.RMD)
  • actions: create a descriptive table (see supporting information in manuscript)
  • output: table

Theoretical Model (TM): Linear Regression Models

  • scripts: SAMexplore_TM_distributions.Rmd & SAMexplore_TM_assumptions.RMD & SAMexplore_TM_analysis.Rmd & SAMexplore_TM_visualization.Rmd
  • input: SAMimputed_with.AUC.variables.RDS via SAMexplore_prepare.for.analyses.r
  • actions: inspect variable distributions, assumptions checks, linear models analysis, and the visualization of marginal effects
  • output: tables & plots

Random Forest (RF): Boruta Variable Selection & Significance testing & Interpretation

  • scripts: SAMexplore_RF_Tuning_Boruta.Rmd & SAMexplore_RF_Boruta_variable.selection.Rmd & SAMexplore_RF_Boruta_interpretation.Rmd
  • input: SAMimputed_with.AUC.variables.RDS via SAMexplore_prepare.for.analyses.r
  • actions: RF tuning, Boruta variable selection, Random permutation statistics, follow-up (PD and ALE) plots
  • output: tables & plots

Model performance evaluation: TM, RF, ensemble (TM+RF)

  • script: SAMexplore_model.performance.evaluation.Rmd
  • input: SAMimputed_with.AUC.variables.RDS via SAMexplore_prepare.for.analyses.r
  • actions: 10 times 5-fold crossvalidated "predictions", to calculate R2 and RMSE of models with:
    1. significant terms TM
    2. selected variables RF/Boruta
    3. combination TM terms & RF variables: linear model with polynomial terms (if required)
  • output: tables & plots

Other files

  • pseudoData.R was used to create fake pseudo-data for an independent check of the R-code
  • SAMexplore_RF_R2_vs_PseudoR2.rmd was used to explore the differences in R2 and pseudo-R2 calculations (also see information in SAMexplore_RF_Boruta_interpretation.Rmd)