Skip to content

Commit

Permalink
Merge branch 'example-data-district28' into datapack-2025
Browse files Browse the repository at this point in the history
  • Loading branch information
jeffeaton committed Jan 3, 2025
2 parents b0e357f + d83dd70 commit 35b99c4
Show file tree
Hide file tree
Showing 9 changed files with 42,907 additions and 1 deletion.
6 changes: 5 additions & 1 deletion NEWS.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,14 @@
# naomi 2.10.7
# naomi 2.10.8

* Add national level aggregate to PEPFAR Target Setting Tool CSV.
- This also adds a new column `country_or_psnu` that codes values `"Country"` or `"PSNU"`
accordingly. If the PSNU level is national, the value `"Country"` will be coded.
* Remove two-year ahead projection (`*.T2`) indicators from PEPFAR Target Setting Tool output.

# naomi 2.10.7
* Add example datasets for 28 district, dropping the `District + Metro` level.
Datasets are saved in `extdata/demo-district28`.

# naomi 2.10.6

* Update `read_dp_art_dec31()` with new .DP file flags to ensure ART adjustment factor and ART patient reallocation counts are applied to number on ART extracted from Spectrum.
Expand Down
3 changes: 3 additions & 0 deletions data-raw/demo-district28/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
# District-level example datasets

Create version of example datasets using 28 districts (area_level = 3) to avoid confusion about `District + Metro` level.
72 changes: 72 additions & 0 deletions data-raw/demo-district28/district28-demo-data.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
library(naomi)
library(tidyverse)
library(sf)

area_merged <- read_sf(system.file("extdata/demo_areas.geojson", package = "naomi"))

pop_agesex <- read_csv(system.file("extdata/demo_population_agesex.csv", package = "naomi"))
art_number <- read_csv(system.file("extdata/demo_art_number.csv", package = "naomi"))
anc_testing <- read_csv(system.file("extdata/demo_anc_testing.csv", package = "naomi"))
survey <- read_csv(system.file("extdata/demo_survey_hiv_indicators.csv", package = "naomi"))

areas_wide <- spread_areas(area_merged)


extdata_path <- "../../inst/extdata/demo-district28"
dir.create(extdata_path)

#' Update areas for spectrum region code

areas_district28 <- area_merged %>%
filter(area_level %in% 0:3)

write_sf(areas_district28, file.path(extdata_path, "demo_areas_district28.geojson"))


#' Create zone-level versions of ANC testing, ART, and population datasets
#'

anc_testing_district28 <- anc_testing %>%
inner_join(
areas_wide %>%
st_drop_geometry() %>%
select(area_id, area_id3, area_name3),
by = "area_id"
) %>%
group_by(area_id = area_id3, area_name = area_name3, age_group, year) %>%
summarise(across(c(starts_with("anc"), "births_facility"), sum), .groups = "drop")

art_number_district28 <- art_number %>%
inner_join(
areas_wide %>%
st_drop_geometry() %>%
select(area_id, area_id3, area_name3),
by = "area_id"
) %>%
group_by(area_id = area_id3, area_name = area_name3, sex, age_group, year, calendar_quarter) %>%
summarise(across(c(starts_with("art"), starts_with("vl")), sum), .groups = "drop")

population_district28 <- pop_agesex %>%
inner_join(
areas_wide %>%
st_drop_geometry() %>%
select(area_id, area_id3, area_name3),
by = "area_id"
) %>%
group_by(area_id = area_id3, area_name = area_name3, source, calendar_quarter, sex, age_group) %>%
summarise(
asfr = weighted.mean(asfr, population),
population = sum(population),
.groups = "drop"
) %>%
select(-asfr, everything(), asfr)


survey_district28 <- survey %>%
semi_join(areas_district28, by = "area_id")

write_csv(anc_testing_district28, file.path(extdata_path, "demo_anc_testing_district28.csv"))
write_csv(art_number_district28, file.path(extdata_path, "demo_art_number_district28.csv"))
write_csv(population_district28, file.path(extdata_path, "demo_population_district28.csv"), na = "")
write_csv(survey_district28, file.path(extdata_path, "demo_survey_district28.csv"), na = "")

365 changes: 365 additions & 0 deletions inst/extdata/demo-district28/demo_anc_testing_district28.csv

Large diffs are not rendered by default.

44 changes: 44 additions & 0 deletions inst/extdata/demo-district28/demo_areas_district28.geojson

Large diffs are not rendered by default.

727 changes: 727 additions & 0 deletions inst/extdata/demo-district28/demo_art_number_district28.csv

Large diffs are not rendered by default.

21,897 changes: 21,897 additions & 0 deletions inst/extdata/demo-district28/demo_population_district28.csv

Large diffs are not rendered by default.

19,691 changes: 19,691 additions & 0 deletions inst/extdata/demo-district28/demo_survey_district28.csv

Large diffs are not rendered by default.

103 changes: 103 additions & 0 deletions vignettes_src/hintr-example_district28.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
#' ---
#' title: "Emulate a hintr model run"
#' output: rmarkdown::html_vignette
#' vignette: >
#' %\VignetteIndexEntry{`hintr` example run}
#' %\VignetteEngine{knitr::rmarkdown}
#' %\VignetteEncoding{UTF-8}
#' ---

##+ preamble, include = FALSE
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
unlink("outputs", recursive = TRUE)

#'
#'
#' This vignette provides example

##+ setup, message = FALSE

library(naomi)

##+ fit_model
hintr_data <- list(
pjnz = system.file("extdata/demo_mwi2024_v6.36.PJNZ", package = "naomi"),
population = system.file("extdata/demo-district28/demo_population_district28.csv", package = "naomi"),
shape = system.file("extdata/demo-district28/demo_areas_district28.geojson", package = "naomi"),
survey = system.file("extdata/demo-district28/demo_survey_district28.csv", package = "naomi"),
art_number = system.file("extdata/demo-district28/demo_art_number_district28.csv", package = "naomi"),
anc_testing = system.file("extdata/demo-district28/demo_anc_testing_district28.csv", package = "naomi")
)

hintr_options <- list(
area_scope = "MWI",
area_level = "3",
calendar_quarter_t1 = "CY2020Q3",
calendar_quarter_t2 = "CY2023Q4",
calendar_quarter_t3 = "CY2025Q3",
calendar_quarter_t4 = "CY2026Q3",
survey_prevalence = "DEMO2020PHIA",
survey_art_coverage = "DEMO2020PHIA",
survey_recently_infected = "DEMO2020PHIA",
include_art_t1 = "true",
include_art_t2 = "true",
anc_clients_year2 = 2023,
anc_clients_year2_num_months = "12",
anc_prevalence_year1 = 2020,
anc_prevalence_year2 = 2023,
anc_art_coverage_year1 = 2020,
anc_art_coverage_year2 = 2023,
spectrum_population_calibration = "national",
artattend = "true",
artattend_t2 = "true",
artattend_log_gamma_offset = -4L,
anchor_home_district = TRUE,
output_aware_plhiv = "true",
rng_seed = 17,
no_of_samples = 500,
max_iter = 250,
use_kish_prev = "true",
deff_prev = 1.0,
use_kish_artcov = "true",
deff_artcov = 1.0,
use_kish_recent = "true",
deff_recent = 1.0,
use_survey_aggregate = "false",
psnu_level = NULL
)

calibration_options <- list(
spectrum_plhiv_calibration_level = "subnational",
spectrum_plhiv_calibration_strat = "sex_age_group",
spectrum_artnum_calibration_level = "subnational",
spectrum_artnum_calibration_strat = "sex_age_group",
spectrum_aware_calibration_level = "subnational",
spectrum_aware_calibration_strat = "sex_age_group",
spectrum_infections_calibration_level = "subnational",
spectrum_infections_calibration_strat = "sex_age_group",
calibrate_method = "logistic"
)

hintr_options$outer_verbose <- TRUE

hintr_paths <- hintr_run_model(hintr_data, hintr_options)
calibrated_paths <- hintr_calibrate(hintr_paths, calibration_options)
spectrum_download <- hintr_prepare_spectrum_download(calibrated_paths)

coarse_download <- hintr_prepare_coarse_age_group_download(calibrated_paths)

#' TO DO: add summary report download

#' Read output package and generate datapack export

##+ read_output
naomi_output <- read_output_package(spectrum_download$path)

datapack_path <- tempfile(fileext = ".csv")
write_datapack_csv(naomi_output, datapack_path)

navigator_path <- tempfile(fileext = ".csv")
write_navigator_checklist(naomi_output, navigator_path)

0 comments on commit 35b99c4

Please sign in to comment.