Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Antimalarial Resistance: Slow Parasite Clearance #289

Merged
merged 9 commits into from
Apr 26, 2024
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ Suggests:
ggplot2,
covr,
mgcv
RoxygenNote: 7.2.3
RoxygenNote: 7.3.1
Roxygen: list(markdown = TRUE)
LinkingTo:
Rcpp,
Expand Down
95 changes: 47 additions & 48 deletions R/antimalarial_resistance.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,55 +5,54 @@
#' @param parameters the model parameters
#' @param drug the index of the drug which resistance is being set, as set by the set_drugs() function, in the parameter list
#' @param timesteps vector of time steps for each update to resistance proportion and resistance outcome probability
#' @param artemisinin_resistance vector of updates to the proportions of infections that are artemisinin resistant at time t
#' @param partner_drug_resistance vector of updates to the proportions of infections that are partner-drug resistant at time t
#' @param slow_parasite_clearance_prob vector of updates to the proportion of artemisinin-resistant infections that result in early treatment failure
#' @param early_treatment_failure_prob vector of updates to the proportion of artemisinin-resistant infections that result in slow parasite clearance
#' @param late_clinical_failure_prob vector of updates to the proportion of partner-drug-resistant infections that result in late clinical failure
#' @param late_parasitological_prob vector of updates to the proportion of partner-drug-resistant infections that result in late parasitological failure
#' @param reinfection_prob vector of updates to the proportion of partner-drug-resistant infections that result in reinfection during prophylaxis
#' @param artemisinin_resistance_proportion vector of updates to the proportions of infections that are artemisinin resistant at time t
#' @param partner_drug_resistance_proportion vector of updates to the proportions of infections that are partner-drug resistant at time t
#' @param slow_parasite_clearance_probability vector of updates to the proportion of artemisinin-resistant infections that result in early treatment failure
#' @param early_treatment_failure_probability vector of updates to the proportion of artemisinin-resistant infections that result in slow parasite clearance
#' @param late_clinical_failure_probability vector of updates to the proportion of partner-drug-resistant infections that result in late clinical failure
#' @param late_parasitological_failure_probability vector of updates to the proportion of partner-drug-resistant infections that result in late parasitological failure
#' @param reinfection_during_prophylaxis_probability vector of updates to the proportion of partner-drug-resistant infections that result in reinfection during prophylaxis
#' @param slow_parasite_clearance_time single value representing the mean time individual's experiencing slow parasite clearance reside in the treated state
#' @export
set_antimalarial_resistance <- function(parameters,
drug,
timesteps,
artemisinin_resistance,
partner_drug_resistance,
slow_parasite_clearance_prob,
early_treatment_failure_prob,
late_clinical_failure_prob,
late_parasitological_prob,
reinfection_prob,
artemisinin_resistance_proportion,
partner_drug_resistance_proportion,
slow_parasite_clearance_probability,
early_treatment_failure_probability,
late_clinical_failure_probability,
late_parasitological_failure_probability,
reinfection_during_prophylaxis_probability,
slow_parasite_clearance_time) {

if(any(partner_drug_resistance > 0,
slow_parasite_clearance_prob > 0,
late_clinical_failure_prob > 0,
late_parasitological_prob > 0,
reinfection_prob > 0)) {
if(any(partner_drug_resistance_proportion > 0,
late_clinical_failure_probability > 0,
late_parasitological_failure_probability > 0,
reinfection_during_prophylaxis_probability > 0)) {
stop("Parameters set for unimplemented feature - late clinical failure, late parasitological failure, or reinfection during prophylaxis")
}

if(any(c(length(artemisinin_resistance),
length(partner_drug_resistance),
length(slow_parasite_clearance_prob),
length(early_treatment_failure_prob),
length(late_clinical_failure_prob),
length(late_parasitological_prob),
length(reinfection_prob)) != length(timesteps))) {
if(any(c(length(artemisinin_resistance_proportion),
length(partner_drug_resistance_proportion),
length(slow_parasite_clearance_probability),
length(early_treatment_failure_probability),
length(late_clinical_failure_probability),
length(late_parasitological_failure_probability),
length(reinfection_during_prophylaxis_probability)) != length(timesteps))) {
stop("Length of one or more resistance parameter vectors does not match time steps specified for update")
}

if(any(artemisinin_resistance < 0 | artemisinin_resistance > 1 |
partner_drug_resistance < 0 | partner_drug_resistance > 1)) {
if(any(artemisinin_resistance_proportion < 0 | artemisinin_resistance_proportion > 1 |
partner_drug_resistance_proportion < 0 | partner_drug_resistance_proportion > 1)) {
stop("Artemisinin and partner-drug resistance proportions must fall between 0 and 1")
}

if(any(slow_parasite_clearance_prob < 0 | slow_parasite_clearance_prob > 1 |
early_treatment_failure_prob < 0 | early_treatment_failure_prob > 1 |
late_clinical_failure_prob < 0 | late_clinical_failure_prob > 1 |
late_parasitological_prob < 0 | late_parasitological_prob > 1 |
reinfection_prob < 0 | reinfection_prob > 1)) {
if(any(slow_parasite_clearance_probability < 0 | slow_parasite_clearance_probability > 1 |
early_treatment_failure_probability < 0 | early_treatment_failure_probability > 1 |
late_clinical_failure_probability < 0 | late_clinical_failure_probability > 1 |
late_parasitological_failure_probability < 0 | late_parasitological_failure_probability > 1 |
reinfection_during_prophylaxis_probability < 0 | reinfection_during_prophylaxis_probability > 1)) {
stop("Resistance outcome probabilities must fall between 0 and 1")
}

Expand Down Expand Up @@ -81,13 +80,13 @@ set_antimalarial_resistance <- function(parameters,

parameters$antimalarial_resistance_drug[[drug_index]] <- drug
parameters$antimalarial_resistance_timesteps[[drug_index]] <- timesteps
parameters$prop_artemisinin_resistant[[drug_index]] <- artemisinin_resistance
parameters$prop_partner_drug_resistant[[drug_index]] <- partner_drug_resistance
parameters$slow_parasite_clearance_prob[[drug_index]] <- slow_parasite_clearance_prob
parameters$early_treatment_failure_prob[[drug_index]] <- early_treatment_failure_prob
parameters$late_clinical_failure_prob[[drug_index]] <- late_clinical_failure_prob
parameters$late_parasitological_failure_prob[[drug_index]] <- late_parasitological_prob
parameters$reinfection_during_prophylaxis[[drug_index]] <- reinfection_prob
parameters$artemisinin_resistance_proportion[[drug_index]] <- artemisinin_resistance_proportion
parameters$partner_drug_resistance_proportion[[drug_index]] <- partner_drug_resistance_proportion
parameters$slow_parasite_clearance_probability[[drug_index]] <- slow_parasite_clearance_probability
parameters$early_treatment_failure_probability[[drug_index]] <- early_treatment_failure_probability
parameters$late_clinical_failure_probability[[drug_index]] <- late_clinical_failure_probability
parameters$late_parasitological_failure_probability[[drug_index]] <- late_parasitological_failure_probability
parameters$reinfection_during_prophylaxis_probability[[drug_index]] <- reinfection_during_prophylaxis_probability
parameters$dt_slow_parasite_clearance[[drug_index]] <- slow_parasite_clearance_time

return(parameters)
Expand Down Expand Up @@ -122,13 +121,13 @@ get_antimalarial_resistance_parameters <- function(parameters, drugs, timestep)
drug <- parameters$antimalarial_resistance_drug[[i]]
treated_with_drug <- which(drugs == drug)
resistance_timestep <- match_timestep(ts = parameters$antimalarial_resistance_timesteps[[i]], t = timestep)
artemisinin_resistance_proportion[treated_with_drug] <- parameters$prop_artemisinin_resistant[[i]][resistance_timestep]
partner_drug_resistance_proportion[treated_with_drug] <- parameters$prop_partner_drug_resistant[[i]][resistance_timestep]
slow_parasite_clearance_probability[treated_with_drug] <- parameters$slow_parasite_clearance_prob[[i]][resistance_timestep]
early_treatment_failure_probability[treated_with_drug] <- parameters$early_treatment_failure_prob[[i]][resistance_timestep]
late_clinical_failure_probability[treated_with_drug] <- parameters$late_clinical_failure_prob[[i]][resistance_timestep]
late_parasitological_failure_probability[treated_with_drug] <- parameters$late_parasitological_failure_prob[[i]][resistance_timestep]
reinfection_during_prophylaxis_probability[treated_with_drug] <- parameters$reinfection_during_prophylaxis[[i]][resistance_timestep]
artemisinin_resistance_proportion[treated_with_drug] <- parameters$artemisinin_resistance_proportion[[i]][resistance_timestep]
partner_drug_resistance_proportion[treated_with_drug] <- parameters$partner_drug_resistance_proportion[[i]][resistance_timestep]
slow_parasite_clearance_probability[treated_with_drug] <- parameters$slow_parasite_clearance_probability[[i]][resistance_timestep]
early_treatment_failure_probability[treated_with_drug] <- parameters$early_treatment_failure_probability[[i]][resistance_timestep]
late_clinical_failure_probability[treated_with_drug] <- parameters$late_clinical_failure_probability[[i]][resistance_timestep]
late_parasitological_failure_probability[treated_with_drug] <- parameters$late_parasitological_failure_probability[[i]][resistance_timestep]
reinfection_during_prophylaxis_probability[treated_with_drug] <- parameters$reinfection_during_prophylaxis_probability[[i]][resistance_timestep]
dt_slow_parasite_clearance[treated_with_drug] <- parameters$dt_slow_parasite_clearance[[i]]
}

Expand All @@ -144,4 +143,4 @@ get_antimalarial_resistance_parameters <- function(parameters, drugs, timestep)

return(resistance_parameters)

}
}
28 changes: 20 additions & 8 deletions R/disease_progression.R
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,27 @@ update_infection <- function(
}

create_progression_process <- function(
state,
from_state,
to_state,
rate,
infectivity,
new_infectivity
) {
state,
from_state,
to_state,
rate,
infectivity,
new_infectivity
) {
function(timestep) {
to_move <- state$get_index_of(from_state)$sample(1/rate)

# Retrieve the indices of all individuals in the to_move state:
index <- state$get_index_of(from_state)

# If the length of rate is greater than 1 (when it's a variable):
if (length(rate) > 1) {
tbreweric marked this conversation as resolved.
Show resolved Hide resolved
rate <- rate$get_values(index$to_vector())
tbreweric marked this conversation as resolved.
Show resolved Hide resolved
}

# Sample the individuals to be moved into a new Bitset using the transition rate(s):
to_move <- index$sample(1/rate)
tbreweric marked this conversation as resolved.
Show resolved Hide resolved

# Update the infection status of those individuals who are moving:
update_infection(
state,
to_state,
Expand Down
67 changes: 49 additions & 18 deletions R/human_infection.R
Original file line number Diff line number Diff line change
Expand Up @@ -295,50 +295,81 @@ calculate_treated <- function(
)
])

#+++ DRUG EFFICACY +++#
#+++++++++++++++++++++#
effectively_treated_index <- bernoulli_multi_p(parameters$drug_efficacy[drugs])
effectively_treated <- bitset_at(seek_treatment, effectively_treated_index)
drugs <- drugs[effectively_treated_index]
n_drug_efficacy_failures <- n_treat - effectively_treated$size()
renderer$render('n_drug_efficacy_failures', n_drug_efficacy_failures, timestep)

#+++ ANTIMALARIAL RESISTANCE +++#
#+++++++++++++++++++++++++++++++#
if(parameters$antimalarial_resistance) {
resistance_parameters <- get_antimalarial_resistance_parameters(
parameters = parameters,
drugs = drugs,
timestep = timestep
)
unsuccessful_treatment_probability <- resistance_parameters$artemisinin_resistance_proportion * resistance_parameters$early_treatment_failure_probability
susceptible_to_treatment_index <- bernoulli_multi_p(p = 1 - unsuccessful_treatment_probability)
susceptible_to_treatment <- bitset_at(seek_treatment, susceptible_to_treatment_index)
drugs <- drugs[susceptible_to_treatment_index]

#+++ EARLY TREATMENT FAILURE +++#
#+++++++++++++++++++++++++++++++#
early_treatment_failure_probability <- resistance_parameters$artemisinin_resistance_proportion * resistance_parameters$early_treatment_failure_probability
successfully_treated_indices <- bernoulli_multi_p(p = 1 - early_treatment_failure_probability)
successfully_treated <- bitset_at(effectively_treated, successfully_treated_indices)
n_early_treatment_failure <- effectively_treated$size() - successfully_treated$size()
renderer$render('n_early_treatment_failure', n_early_treatment_failure, timestep)
drugs <- drugs[successfully_treated_indices]
resistance_parameters$dt_slow_parasite_clearance <- resistance_parameters$dt_slow_parasite_clearance[successfully_treated_indices]
tbreweric marked this conversation as resolved.
Show resolved Hide resolved

#+++ SLOW PARASITE CLEARANCE +++#
#+++++++++++++++++++++++++++++++#
slow_parasite_clearance_probability <- resistance_parameters$artemisinin_resistance_proportion[successfully_treated_indices] *
resistance_parameters$slow_parasite_clearance_probability[successfully_treated_indices]
slow_parasite_clearance_indices <- bernoulli_multi_p(p = slow_parasite_clearance_probability)
slow_parasite_clearance_individuals <- bitset_at(successfully_treated, slow_parasite_clearance_indices)
renderer$render('n_slow_parasite_clearance', slow_parasite_clearance_individuals$size(), timestep)
non_slow_parasite_clearance_individuals <- successfully_treated$copy()$set_difference(slow_parasite_clearance_individuals)
renderer$render('n_successfully_treated', successfully_treated$size(), timestep)
resistance_parameters$dt_slow_parasite_clearance <- resistance_parameters$dt_slow_parasite_clearance[slow_parasite_clearance_indices]
tbreweric marked this conversation as resolved.
Show resolved Hide resolved

} else {
susceptible_to_treatment <- seek_treatment

successfully_treated <- effectively_treated
renderer$render('n_successfully_treated', successfully_treated$size(), timestep)

}

n_early_treatment_failure <- n_treat - susceptible_to_treatment$size()
successfully_treated_index <- bernoulli_multi_p(parameters$drug_efficacy[drugs])
successfully_treated <- bitset_at(susceptible_to_treatment, successfully_treated_index)
successfully_treated_drugs <- drugs[successfully_treated_index]
n_treat_eff_fail <- susceptible_to_treatment$size() - length(successfully_treated_index)
renderer$render('n_early_treatment_failure', n_early_treatment_failure, timestep)
renderer$render('n_treat_eff_fail', n_treat_eff_fail, timestep)
renderer$render('n_treat_success', successfully_treated$size(), timestep)

# Update variables of those who have been successfully treated:
if (successfully_treated$size() > 0) {
variables$state$queue_update("Tr", successfully_treated)
variables$infectivity$queue_update(
parameters$cd * parameters$drug_rel_c[successfully_treated_drugs],
parameters$cd * parameters$drug_rel_c[drugs],
successfully_treated
)
variables$drug$queue_update(
successfully_treated_drugs,
drugs,
successfully_treated
)
variables$drug_time$queue_update(
timestep,
successfully_treated
)
if(parameters$antimalarial_resistance) {
variables$dt$queue_update(
parameters$dt,
non_slow_parasite_clearance_individuals
)
variables$dt$queue_update(
resistance_parameters$dt_slow_parasite_clearance,
tbreweric marked this conversation as resolved.
Show resolved Hide resolved
slow_parasite_clearance_individuals
)
}
}

successfully_treated

}


#' @title Schedule infections
#' @description
#' Schedule infections in humans after the incubation period
Expand Down
7 changes: 4 additions & 3 deletions R/model.R
Original file line number Diff line number Diff line change
Expand Up @@ -74,9 +74,10 @@
#' susceptible
#' * net_usage: the number people protected by a bed net
#' * mosquito_deaths: number of adult female mosquitoes who die this timestep
#' * n_early_treatment_failure: number of clinically treated individuals who experienced early treatment failure in this timestep
#' * n_treat_eff_fail: number of clinically treated individuals who's treatment failed due to drug efficacy
#' * n_treat_success: number of successfully treated individuals in this timestep
#' * n_drug_efficacy_failures: number of clinically treated individuals whose treatment failed due to drug efficacy
#' * n_early_treatment_failure: number of clinically treated individuals who experienced early treatment failure
#' * n_successfully_treated: number of clinically treated individuals who are treated successfully (includes individuals who experience slow parasite clearance)
#' * n_slow_parasite_clearance: number of clinically treated individuals who experienced slow parasite clearance
#'
#' @param timesteps the number of timesteps to run the simulation for (in days)
#' @param parameters a named list of parameters to use
Expand Down
9 changes: 7 additions & 2 deletions R/mortality_processes.R
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ create_mortality_process <- function(variables, events, renderer, parameters) {
died <- individual::Bitset$new(pop)$insert(bernoulli_multi_p(deathrates))
renderer$render('natural_deaths', died$size(), timestep)
}
reset_target(variables, events, died, 'S', timestep)
reset_target(variables, events, died, 'S', parameters, timestep)
sample_maternal_immunity(variables, died, timestep, parameters)
}
}
Expand Down Expand Up @@ -74,7 +74,7 @@ sample_maternal_immunity <- function(variables, target, timestep, parameters) {
}
}

reset_target <- function(variables, events, target, state, timestep) {
reset_target <- function(variables, events, target, state, parameters, timestep) {
if (target$size() > 0) {
# clear events
to_clear <- c(
Expand Down Expand Up @@ -113,6 +113,11 @@ reset_target <- function(variables, events, target, state, timestep) {

# onwards infectiousness
variables$infectivity$queue_update(0, target)

# treated compartment residence time:
if(!is.null(variables$dt)) {
variables$dt$queue_update(parameters$dt, target)
}

# zeta and zeta group and vector controls survive rebirth
}
Expand Down
Loading
Loading