This repository has been archived by the owner on Jan 30, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
321 lines (261 loc) · 8.08 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import streamlit as st
import itertools
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
import seaborn as sns
sns.set_style('whitegrid')
from bokeh.plotting import figure, show
from bokeh. io import output_notebook
from bokeh.layouts import column, row
from bokeh.models import Span, HoverTool, Label, ColumnDataSource
from sklearn import preprocessing
from sklearn.metrics import make_scorer, recall_score
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import IsolationForest
pd.set_option('display.float_format', lambda x: '%.3f' % x)
# set page title
# st.beta_set_page_config(
# page_title="CBI Auction Exploration",
# page_icon="💹",
# layout="centered"
# )
'''
# Central Bank of Iraq Dollar Auction Data
_A short visual analysis of data scraped from the Central Bank
of Iraq's daily dollar auction_
### Sample of Auction Results
This auction happened on September 18, 2018. "Total sales for the
purposes of fortifying foreign accounts" was 190,058,455; "total sales for cash"
was 35,900,000.
'''
@st.cache(show_spinner=True)
def load_image(img):
im = Image.open(os.path.join(img))
return im
st.image(load_image("./data/figures/sample_auction.png"),width=600)
def load_data():
data = pd.read_csv('./data/processed/processed.csv')
data['rolling_foreign'] = data.total_for_foreign.rolling(7).mean()
return data
data = load_data()
if st.checkbox('View Data'):
st.subheader("Sample of the Scraped Data")
st.dataframe(data[0:55].style.highlight_max(color='skyblue',axis=0))
'''
### Total for Covering Foreign Accounts Since September 2017
Plot of the amounts auctioned to cover foreign accounts over the
past 2+ years. Vertical markers indicate significant announcements regarding
the United States exiting the JCPOA.
'''
def plot_amounts_over_time(data):
source1 = ColumnDataSource(data)
source2 = ColumnDataSource(data)
plot = figure(
x_axis_label='Date',
y_axis_label='Auction Amount',
plot_width=750,
plot_height=450
)
plot.yaxis.major_label_orientation = np.pi/3
plot.circle(
source=source1,
x="index",
y="total_for_foreign",
fill_color="skyblue",
alpha=.7
)
plot.line(
source=source1,
x="index",
y="total_for_foreign",
line_width=2,
line_color='dodgerblue',
alpha=.4,
legend_label="Total for foreign",
# hover_color='black',
# hover_alpha=.8
)
plot.line(
source=source2,
x="index",
y="rolling_foreign",
line_width=2.75,
line_color='#1E20FF',
alpha=0.5,
legend_label="Foreign 7-day rolling avg",
hover_color='#1E20FF',
hover_alpha=1
)
# legend
plot.legend.location = "top_left"
plot.legend.click_policy="hide"
plot.legend.background_fill_color = 'white'
plot.legend.label_text_font_size = '9pt'
# hover
hover = HoverTool(tooltips=[
('total for foreign','@total_for_foreign'),
('rolling foreign','@rolling_foreign{int}')
])
plot.add_tools(hover)
# line for sanctions announcement
sanct_announce = Span(
location = 164,
dimension='height',
line_color='#FF1E90',
line_width=3,
line_dash='dashed'
)
plot.add_layout(sanct_announce)
sanct_announce_label = Label(
x=164,
y=190000000,
text='8 May 2018 announcement ',
text_color='#FF1E90',
border_line_color=None,
text_font_size='12px',
text_align='right'
)
plot.add_layout(sanct_announce_label)
# line for first snapback sanctions
first_snapback = Span(
location = 227,
dimension='height',
line_color='#FF1E90',
line_width=3,
line_dash='dashed'
)
plot.add_layout(first_snapback)
first_snapback_label = Label(
x=227,
y=15000000,
text=' 6 Aug 2018 snapback sanctions',
text_color='#FF1E90',
border_line_color=None,
text_font_size='12px',
text_align='left'
)
plot.add_layout(first_snapback_label)
second_snapback = Span(
location = 291,
dimension='height',
line_color='#FF1E90',
line_width=3,
line_dash='dashed'
)
plot.add_layout(second_snapback)
second_snapback_label = Label(
x=291,
y=39000000,
text=' 4 Nov 2018 snapback sanctions',
text_color='#FF1E90',
border_line_color=None,
text_font_size='12px',
text_align='left'
)
plot.add_layout(second_snapback_label)
plot.xaxis.ticker = [76, 334,583]
plot.xaxis.major_label_overrides = {76: '2018-01-01', 334: '2019-01-01',583:'2020-01-01'}
# turn off scientific notation for the y axis
plot.yaxis.formatter.use_scientific = False
return plot
plot = plot_amounts_over_time(data)
st.bokeh_chart(plot)
def normalize_and_model(data):
# Normalize the data
X = data[['total_for_foreign','total_cash']].dropna()
X_norm = preprocessing.normalize(X)
# Fit the model
clf = IsolationForest(max_samples=100,random_state=42)
clf.fit(X)
df = X.copy(deep=True)
df['anomaly_scores'] = clf.decision_function(X)
# Add anomaly scores to original dataframe
data.loc[data.index.isin(df.index),'anomaly_scores'] = df['anomaly_scores']
return data
data_iforest = normalize_and_model(data)
# Visualize distribution of anomaly scores in histogram
'''
### Distribution of Anomaly Scores
After running the Isolation Forest algorithm on the data, below
is the distribution of anomaly scores across the data. The lower the score, the
more anomalous the algorithm has labeled the datapoint.
'''
def plot_hist(data):
hist, edges = np.histogram(data,bins=50)
hist_df = pd.DataFrame({
"column": hist,
"left": edges[:-1],
"right": edges[1:]
})
hist_df["interval"] = ["%d to %d" % (left, right) for left,right in zip(hist_df["left"], hist_df["right"])]
source = ColumnDataSource(hist_df)
plot = figure(
plot_height=400,
plot_width=625,
x_axis_label='Anomaly score',
y_axis_label='Count',
)
plot.quad(
top="column",
bottom=0,
left="left",
right="right",
source=source,
line_color="black",
fill_color="dodgerblue",
alpha=0.9,
hover_fill_color='red',
hover_fill_alpha=0.9
)
hover = HoverTool(tooltips=[('Count',str("@" + "column"))])
plot.add_tools(hover)
return plot
hist = plot_hist(data_iforest['anomaly_scores'].dropna())
st.bokeh_chart(hist)
'''
### Scatter Plot with Labels Overlayed
Use the slider to adjust the percentile of abnormality.
'''
percentile = st.slider('Select Percentile',0,100,5)
@st.cache
def apply_pctile_label(data,percentile):
data['most_anomalous'] = np.where(
data.anomaly_scores <= data.anomaly_scores.quantile(percentile/100),
1,
0
)
return data
labeled_data = apply_pctile_label(data=data_iforest,percentile=percentile)
markers = ["H",'X']
sizes = [60, 90]
colors= ['dodgerblue','red']
plt.figure(figsize=(14,7))
for i in range(0,2):
plt.scatter(
labeled_data[labeled_data.most_anomalous==i]['total_for_foreign'],
labeled_data[labeled_data.most_anomalous==i]['total_cash'],
s=sizes[i],
marker=markers[i],
c=colors[i],
alpha=0.8
)
plt.xlabel('Total for foreign',labelpad=10,fontsize=15)
plt.ylabel('Total cash',labelpad=10,fontsize=15)
plt.xticks(fontsize=13)
plt.yticks(fontsize=13)
plt.legend(
('Bottom {}% least anomalous'.format(100-percentile),'Top {}% most anomalous'.format(percentile)),
loc='upper right',
fontsize=16
)
plt.ticklabel_format(useOffset=False, style='plain')
st.pyplot()
'''
### Top 20 Most Anomalous Datapoints
As was expected, the datapoints that the Isolation Forest algorithm
finds most anomalous are the outlier values in _total_for_foreign_ and _total_cash_.
'''
st.write(data.sort_values(by='anomaly_scores').reset_index().iloc[0:20,1:-1])